
N
N
T

:
2
0
2
3
IP

P
A
X
X
X
X

Simulating Crowds with Reinforcement
Learning

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à l’École Polytechnique

École doctorale n◦626 École doctorale de l’Institut Polytechnique de Paris (EDIPP)
Spécialité de doctorat: Informatique

Thèse présentée et soutenue à Palaiseau, le 30 novembre 2023, par

Ariel Kwiatkowski

Composition du Jury :

Sylvie Gibet
Université Bretagne Sud Président

Ludovic Denoyer
Sorbonne Université Rapporteur

Nicolas Courty
Universite Bretagne Sud Rapporteur

Ioannis Karamouzas
University of California, Riverside Examinateur

Jesse Read

École Polytechnique Examinateur

Marie-Paule Cani

École Polytechnique Directrice de thèse

Julien Pettré
INRIA Rennes Co-directeur de thèse

Vicky Kalogeiton

École Polytechnique Co-directrice de thèse

(Invité)

Abstract

Simulating crowd behavior is an important aspect of creating immersive digital environments, be

it for video games or other virtual experiences. Traditional methods lead to satisfactory results

but are often limited in their capacity to accurately emulate the complexity of human behavior.

Recently, Reinforcement Learning (RL) has emerged as a new approach to tackle this problem.

However, there are many details of RL-driven crowd simulation that may seem irrelevant, but turn

out to be rather impactful. This includes the underlying physics simulation, models of observations

and dynamics, and details of the RL algorithm optimizing the crowd’s behavior.

This thesis aims to shed light on these critical details and their effects on virtual crowds trained

with RL. Our overarching objective is to establish an understanding of relevant design choices,

enabling the creation of more realistic crowd simulations.

In the first part of the thesis, we focus on evaluating how various design choices of the foun-

dational crowd simulation impact both the learning performance and the overall quality of the

resulting behavior. We present a classification of observation methods and dynamics, and evalu-

ated their impact with DRL experiments. This shows that nonholonomic controls with a variant

of egocentric observations produce better results compared to other, simpler alternatives.

Following this, we investigate the details of reward function design for simulating human-like

crowds. We explore different reward functions, providing theoretical insights on their properties,

and evaluate them empirically in different scenarios. Our experiments show that directly minimiz-

ing energy usage, when paired with a properly scaled guiding potential, are effective in producing

more efficient crowd behaviors.

In the final part of the thesis, we explore the discounting mechanism in RL. We present the Uni-

versal Generalized Advantage Estimation (UGAE) algorithm, a novel solution that enables using

modern RL algorithms with arbitrary discounting. We also introduce Beta-weighted discounting

to parameterize non-exponential discounting methods. We demonstrate that UGAE outperforms

the Monte Carlo baseline using both standard RL benchmarks and crowd simulation scenarios.

This paves the way to future crowd simulation methods using non-exponential discounting, which

may help overcome some of the challenges identified in our previous work.

This work, combined, provides critical insights into the dynamics of reinforcement learned

crowds, and contributes significantly to the development of new and improved techniques for crowd

simulation.

i

ii

Résumé

Simuler le comportement des foules constitue une composante clé de la création d’espaces numériques

immersifs. Les méthodes traditionnelles, bien qu’efficaces, sont souvent limitées dans leur capacité

à reproduire fidèlement la complexité du comportement humain. Récemment, l’apprentissage par

renforcement (RL) a émergé comme une nouvelle approche pour surmonter ce défi. Cependant, de

nombreux détails de la simulation des foules par RL peuvent sembler négligeables, mais s’avèrent

avoir un impact majeur, incluant la simulation physique sous-jacente, les modèles d’observations

et de dynamiques, et les détails de l’algorithme RL lui-même.

Cette thèse vise à mettre en lumière ces détails cruciaux et leurs effets sur les foules virtuelles

formées par RL. Notre objectif est d’établir une compréhension des choix de conception pertinents

qui permettraient la création de simulations de foules plus réalistes.

Dans la première partie, nous nous concentrons sur l’évaluation de l’impact des divers choix

de conception sur la performance d’apprentissage et la qualité du comportement résultant. Nos

expériences avec le Deep RL montrent que les contrôles non holonomiques avec une variante

d’observations égocentriques produisent de meilleurs résultats par rapport aux autres alternatives

plus simples.

Ensuite, nous examinons les détails de la conception de la fonction de récompense pour simuler

des foules semblables aux humains. Nos expériences montrent qu’une minimisation directe de

l’utilisation d’énergie, lorsqu’elle est couplée à un potentiel de guidage correctement calibré, permet

de générer des comportements de foule plus efficaces.

Enfin, nous explorons le mécanisme d’escompte dans le RL. Nous présentons l’algorithme

UGAE, une nouvelle solution qui permet l’utilisation d’algorithmes RL modernes avec un escompte

arbitraire. Nous démontrons que UGAE surpasse la base de référence de Monte Carlo en utilisant

à la fois des critères de référence RL standard et des scénarios de simulation de foule. Ceci ouvre

la voie à de futures méthodes de simulation de foule utilisant un escompte non exponentiel.

Dans l’ensemble, cette recherche apporte des éclairages essentiels sur la dynamique des foules

formées par RL, et contribue significativement au développement de nouvelles techniques et à

l’amélioration des techniques existantes pour la simulation de foule.

iii

iv

Contents

1 Introduction 9

1.1 Objective . 12

1.2 Methodology . 12

1.3 Thesis structure . 13

1.4 Publications . 13

2 State of the Art 15

2.1 Introduction . 15

2.1.1 Problems in Character Animation . 16

2.2 Definitions and Preliminaries . 16

2.2.1 Reinforcement Learning Formalisms . 17

2.2.2 Fundamentals of RL Algorithms . 21

2.2.3 Reward Hypothesis, Discounting, Advantage 23

2.3 Classification of RL Algorithms . 25

2.3.1 Policy-based or Value-based . 25

2.3.2 Actor-Critic . 25

2.3.3 On-policy or Off-policy . 25

2.3.4 Model-free or Model-based . 26

2.3.5 Single-agent or Multiagent . 26

2.3.6 Summary . 26

2.4 Single-agent RL Algorithms . 27

2.4.1 DQN . 27

2.4.2 Rainbow . 28

2.4.3 REINFORCE . 29

2.4.4 TRPO . 29

2.4.5 PPO . 30

2.4.6 A3C, A2C . 31

2.4.7 GAE . 31

2.4.8 DDPG . 32

2.4.9 TD3 . 33

2.4.10 SAC . 33

2.4.11 Learning from Data . 34

2.4.12 Summary . 35

2.5 Multiagent RL Algorithms . 35

2.5.1 Independent Learning . 35

1

2.5.2 MADDPG . 35

2.5.3 MAPPO . 36

2.5.4 QMIX . 36

2.5.5 Summary . 37

2.6 Skeletal Animation . 37

2.6.1 RL for Kinematic Motion Synthesis . 37

2.6.2 The Many Challenges Beyond the Choice of Algorithm 37

2.6.3 RL for Individual Character Skills . 39

2.7 Crowd Animation . 43

2.7.1 Challenges of Crowds . 43

2.7.2 Applications . 43

2.8 Human Interaction . 45

2.9 Frameworks . 46

2.9.1 Neural Networks . 46

2.9.2 Environments . 47

2.9.3 Algorithm implementations . 49

2.9.4 Summary . 50

2.10 Conclusions . 51

3 Reinforcement Learning for Crowd Simulation 55

3.1 Introduction . 55

3.2 Environment Design Choices . 56

3.2.1 Problem Formulation . 56

3.2.2 Observation Space . 57

3.2.3 Action Space and Dynamics . 58

3.3 Reward Function Design . 60

3.3.1 Energy and Metrics . 61

3.3.2 Reward and Preferred Velocity . 61

3.3.3 Energy as reward . 63

3.4 Experimental setup . 64

3.4.1 Policy Optimization . 65

3.4.2 Network Architecture . 65

3.5 Experiments . 67

3.5.1 Dynamics and Observations performance 67

3.5.2 All Scenarios . 67

3.5.3 Velocity Reward Exponent . 70

3.5.4 Importance of collision penalty . 70

3.5.5 Common Failure Modes . 72

3.6 Discussion . 73

3.6.1 Limitations and Future Work . 74

3.6.2 Conclusions . 74

4 Reward function design 75

4.1 Introduction . 75

4.2 Energy Usage Model . 76

2

4.2.1 Acceleration correction . 77

4.3 Navigation reward design . 78

4.3.1 Energy as reward . 78

4.3.2 Energy-based potential . 80

4.3.3 Discounting invariance . 81

4.3.4 Non-finishing penalty . 82

4.3.5 Alternative approaches . 82

4.4 Reward evaluation . 83

4.4.1 Experimental setup . 83

4.4.2 Reward function structure . 84

4.5 Results . 85

4.5.1 Is potential necessary? . 87

4.5.2 Impact of acceleration . 88

4.6 Conclusions . 88

5 Non-exponential reward discounting 91

5.1 Introduction . 91

5.2 UGAE – Universal Generalized Advantage Estimation 92

5.2.1 UGAE . 93

5.2.2 Added estimation bias . 94

5.2.3 Non-exponential discounting . 95

5.3 Beta-weighted discounting . 95

5.3.1 Beta-weighted discounting . 95

5.3.2 Beta distribution properties . 96

5.4 Analysis of non-exponential discounting methods 97

5.4.1 Properties of discounting . 97

5.4.2 Experimental Analysis . 98

5.4.3 Discussion . 99

5.4.4 Why non-exponential discounting? . 100

5.5 DRL Experiments . 100

5.5.1 Results . 102

5.5.2 Computation time . 102

5.5.3 Discussion . 102

5.6 Conclusions . 103

6 Conclusion 105

A Non-exponential reward discounting 111

A.1 Proofs . 111

A.2 Beta-weighted Discounting Properties . 117

A.3 Pathworld experiments . 118

A.3.1 Setup . 118

A.3.2 Pathworld results . 119

3

B Reward function design 121

B.1 Discounting-invariant reward . 121

B.2 Algorithmic details . 122

B.3 Reward implementation details . 122

4

List of Figures

1.1 A crowd of real people walking through a crossing in Tokyo. 9

1.2 A crowd of virtual people in virtual Paris, as seen in Assassin’s Creed Unity. . . . 10

1.3 A crowd of virtual people in a simple virtual Reinforcement Learning environment. 11

2.1 A visual depiction of the basic Reinforcement Learning loop corresponding to the

POMDP formalism. The agent and the environment exchange information between

each other. The agent perceives the environment state and executes an action.

The environment then updates its state, and communicates it to the agent via an

observation function, together with the reward for the last action. 17

2.2 A diagram showing a taxonomy of the Reinforcement Learning algorithms described

in this work. We focus on two divisions: single agent or multiagent, and policy-based

or value-based. The colors of nodes correspond to whether the algorithm is on-policy

(red), off-policy (blue), or in between (green). Algorithms marked with an asterisk

(∗∗∗) can only be used with discrete action spaces. 24

2.3 Imitation-based Learning. Proposed methods as in [126] allow to successfully synthe-

size animations from motion capture data. In other works, as in [129], they combine

such techniques with the possibility of adding low-level behaviours to control the

production of high-complexity animations. 40

2.4 There is a wide variety of methods that also address the synthesis of animations for

quadrupedal or arbitrary morphology [108] [126] [190]. While the limited amount

of motion capture data introduces an additional challenge, such methods try to

overcome this constraint by covering a wide range of techniques, from imitation-

based approaches to pure objective RL. 42

2.5 The relative popularity of PyTorch (red) and TensorFlow (blue) in terms of search

volume on Google according to Google Trends, worldwide, between 01/01/2016 and

27/07/2021. 47

2.6 A visualization of different legged models of varying complexity. The agents’ objec-

tive is moving each of the joints so that the overall center of mass moves forward or

is balanced, while minimizing the energy expenditure. From left to right: Hopper,

Walker2d, Humanoid (MuJoCo) and Humanoid (PyBullet). 48

5

3.1 A schematic representation of the available action spaces. In each case, we take a

bird’s-eye view of an agent moving in the positive Y direction at an intermediate

speed, represented by the blue arrow. The blue circle represents the space of all

physically possible velocities (i.e. below the maximum speed). The green area rep-

resents the velocities that the agent is able to have in the following timestep under

the specific action space. 59

3.2 (a) Rewards and energy for an agent moving at a constant speed, in the simplified

model described in Section 3.3.2. All curves are normalized to be in the [0, 1] range

in order to enable direct comparison. We consider energy values with the opposite

sign, because energy is supposed to be minimized, while the reward is maximized.

(b) MSE between the reward and the energy, as a function of the velocity reward

exponent. (c) Optimal velocity as a function of the velocity reward coefficient cv,

varied by the exponent ce. (d) Discounted negative energy expenditure as a function

of velocity. 62

3.3 Agent’s initial positions and goals in four scenarios: (a) Circle with 30 agents. (b)

Corridor with 72 agents. (c) Crossing with 32 agents. (d) Random with 15 agents. 64

3.4 The neural architecture used as the policy. Green blocks represent inputs, blue

blocks represent feed-forward neural networks, yellow blocks represent vector op-

erations, red blocks represent outputs. Depending on the observation model used,

certain elements of the architecture are disabled. 66

3.5 Comparison of training results after a hyperparameter search in the Circle 12 sce-

nario. (a) Mean episodic reward (b) Mean energy expenditure. Black bars represent

the standard error of the mean. 68

3.6 Comparison of various design choices in a given environment. The last bar corre-

sponds to the best-performing agent across all design choices. All values are averaged

across 8 independent training runs with different random seeds and otherwise iden-

tical parameters. Lower is better. AP stands for Agent Perception as defined in

Section 3.2.2. 69

3.7 Comparison of energy usage in agents trained with a different exponent in the ve-

locity term of the reward function. Lower is better. 71

3.8 Comparison of energy usage and success rate in agents trained in Circle 12 scenario,

with a varied collision penalty in the reward function. 71

3.9 Comparison of energy usage, collision count and success rate in agents trained in

Crossway 50 scenario, with a varied collision penalty in the reward function. . . . 72

4.1 Agent’s initial positions and goals in five scenarios: (a) Circle with 40 agents. (b)

Corridor with 50 agents. (c) Crossing with 50 agents. (d) Choke with 20 agents.

(e) Car with 20 agents. In each scenario, agents must reach the goal with the

same color as them. In the circle scenario, initial starting positions are randomly

perturbed during each episode. In the car scenario, the obstacle at the bottom of

the scene moves upwards. 75

4.2 Energy used in a single timestep when moving at a velocity of v, after having the

velocity of 1.3 m/s in the previous timestep, with ∆t = 0.01 s. 77

6

4.3 Normalized discounted reward, with energy optimization as the direct objective.

Depending on the distance d and the discount factor γ, the global optimum is

different, and in some cases, the optimal behavior is standing still with v = 0. . . . 79

4.4 Success rates of agents trained with certain reward functions in the Circle scenario. 86

4.5 Energy+ metric as a function of training progress with various reward functions. To

maintain the performance from the first stage of the training, it is necessary to either

use a potential term, or set the discount factor to γ = 1. Agents without a potential

or a final heuristic converge to standing still, while other variants’ performance

significantly degrades. 87

4.6 Histogram of accelerations in the Circle scenario, trained with and without the

acceleration-based term in the reward function. 88

5.1 Different properties of a discounting, as a function of η, with given (µ, Tmax) param-

eters listed in the legend. (a) Importance of the near future (b) Variance measure

(c) Effective time horizon (d) Total discounting sum 99

5.2 Visualizations of the two crowd simulation scenarios used in the experiments. In

both cases, each agent needs to reach the opposite end of their respective route, and

is then removed from the simulation. 100

5.3 Training curves in DRL experiments using non-exponential discounting. All curves

are averaged across 8 independent training runs. Shading indicates the standard

error of the mean. In all experiments, using λ values that were tuned for op-

timality with exponential discounting, significantly outperform the MC baseline

(λ = 1). This indicates that UGAE enables translating the benefits of GAE to

non-exponential discounting. 101

5.4 Time needed to compute GAE (orange) and UGAE (blue) with a single consumer

CPU, on log-log scale. The green line is a reference duration of 10 seconds repre-

senting a typical training iteration. While UGAE is more expensive, with typical

training step durations, the time to compute its values is negligible. 102

A.1 Pathworld environment results under different discounting schemes. Hyperbolic

[36] and exponential (various curves) discountings fail to approximate the empirical

(dashed) value. Instead, the proposed Beta-weighted discounting approximates it

much better, despite its different functional form. 118

7

List of Tables

2.1 A comparison of different formalisms used to define an RL problem. Legend: ×
– the property cannot be modelled in this formalism, ∼ – the property can be

modelled in this formalism, but is not the intended use or requires extra effort, ✓ –

the property can be modelled in this formalism, ⋆ – this formalism is particularly

suitable for this property. Multiagent Cooperative and Competitive refers to the

rewards being either shared or zero-sum, respectively. Multiagent Mixed is neither

fully cooperative nor competitive. Simultaneous and Turn-based refers to whether

all agents take their actions at the same time, or only one agent does. 20

2.2 A summary of the DRL algorithms, simulation engines, and neural network frame-

works in the described papers, where applicable and stated in the paper or the

provided source code. 1 Value Iteration, 2 Open Dynamics Engine, 3 Temporal

Difference learning, 4 Maximum A Posteriori Policy Optimization. 52

2.3 A comparison of algorithm support between various frameworks. Legend: ✓ – algo-

rithm supported by the framework, × – algorithm not supported by the framework.

Multiagent refers to the capability of training in multiagent environments, with or

without parameter sharing. Note that this is not a complete list of algorithms im-

plemented by each framework, as some of them include many other, less relevant

algorithms. 53

2.4 Continuation of Table 2.3. 53

4.1 Mean value of the Energy+ metric after training in a given scenario, using a given

reward function. Each value is based on 8 independent training runs. Lower is better. 86

A.1 The values of different metrics for a chosen set of discounting method and their

parameters. 117

A.2 Values of the Mean Square Error for different discounting methods on the Pathworld

environment, summed across the first 14 paths i ∈ 1, 14. Lower is better. 118

8

Chapter 1

Introduction

Figure 1.1: A crowd of real people walking through a crossing in Tokyo.

Virtual worlds have become increasingly important in today’s entertainment. From movies,

through video games, and all the way to immersive virtual reality experiences, people often want

to be in a different world – whether as part of it or shaping it to their own preferences. For this

to be successful, it is important to create a world that feels alive, whether or not it is realistic.

Beyond just entertainment, crowd simulation has practical applications in fields like urban de-

sign and transport planning. By simulating realistic human behavior, city planners can optimize

public spaces, transit routes, and building layouts. These simulations help make real-world infras-

tructures more efficient, directly impacting daily life, showing that it is also worthwhile to pursue

realistic simulations.

The key component in building such lively worlds is the people (or, in some cases, other crea-

tures) – and since the worlds are virtual, so are they. Media with multiple users have the “simplest”

solution, with each character being controlled by a real-life human being, ensuring that they are

as human-like as possible. Or are they? There is a subtle but important distinction between the

9

Figure 1.2: A crowd of virtual people in virtual Paris, as seen in Assassin’s Creed Unity.

way humans move in real life, and the way they move when controlling a virtual character.

Whether we want to simulate the motion of real-world humans, or the motion of characters

controlled by real-world humans, this task can be roughly split into two constituent parts – ani-

mating each individual character, often at the level of skeletal or muscle control; and simulating

the entire crowd, often at the level of trajectories. The two components can then be composed for

a fully animated crowd, filled with human-like avatars.

In this thesis, we focus on the latter component – simulating the trajectories of crowd partic-

ipants, abstracting away the details of their movement. The central question is “Given a certain

arrangement of humans, where should they go to reach their goals, and at what pace?” The solu-

tion to this can then be used to guide individual animation models for a full simulation of humans

in a virtual world.

Focusing on the level of trajectories offers a “bird’s eye” perspective on the crowd, where each

individual’s movement is represented as a curve on a manifold, exhibiting a network of paths

across the environment. This can also be explored from an egocentric point of view, considering

the relative motions and interactions of the agents from the perspective of each individual. The

movements captured at this level might include position, speed, and their changes due to obstacle

avoidance or group interactions. These components serve as a basis for a realistic crowd simulation.

When the crowd becomes increasingly dense and complex, the efficiency provided by such a

trajectory-level scale becomes even more important. Simulating the motion of the body of each

character can prove computationally heavy and inefficient when applied to large crowds. Con-

versely, the abstraction provided by trajectory simulation enables the fast and efficient processing

of crowd dynamics, focusing on the high-level paths of the individuals. Such a method allows

for rapid simulations even for huge crowds, with the finer details of individual behavior added

selectively as required, optimizing computational resources without compromising realism.

Current techniques for crowd simulation often rely on simple models such as fluid dynamics,

force-based algorithms or heuristic velocity-based approaches. This results in behaviors that appear

10

Figure 1.3: A crowd of virtual people in a simple virtual Reinforcement Learning environment.

artificial or robotic, lacking the subtlety and spontaneity of human motion. Moreover, adapting

these methods to new scenarios often requires tedious, manual tuning of many parameters defining

the simulation.

Reinforcement Learning (RL), an area of machine learning, emerges as a promising tool to

address these issues. Its capacity to learn from experience, adjust to new situations, and make

optimized decisions aligns well with the challenges of crowd simulation. Through the RL frame-

work, agents can be taught to emulate more human-like behavior, thus enhancing the realism of

the crowd simulation.

At its core, RL is a method of learning sequential decision-making through trial and error,

where the agent learns how to act in an environment to maximize some notion of cumulative

reward. Agents learn to predict the impact of their actions over time, considering both immediate

and future outcomes, and then act in such a way that on average, the outcomes are as good as

possible. This framework mirrors the process of human decision-making in crowds, making it a

suitable choice for trajectory simulation.

Further complexities arise when multiple agents act in a shared environment, leading to the

domain of Multiagent Reinforcement Learning (MARL). In MARL, the environment’s dynamics

become non-stationary from an individual agent’s perspective, as other agents constantly modify

their policies over the course of the training. Dealing with this non-stationarity is challenging, yet

it is essential for simulating dynamic crowd behaviors.

The concept of using RL for crowd simulation is somewhat recent. In prior work, these algo-

rithms have been used to model both individual and crowd behaviors. Each person in the crowd

is generally treated as an individual RL agent. They navigate the environment, observing their

current state, taking actions, and receiving rewards based on their success in achieving their goals,

such as reaching a destination or avoiding collision with others. These agents continuously learn

and adjust their policies over time, aiming to optimize their actions for future rewards. When

multiple agents are involved, as is the case in crowd simulation, we transition into the realm of

MARL, which makes the optimization procedure more complex.

We build upon these ideas, focusing on the fundamental aspects of crowd simulation that often

go overlooked. As mentioned earlier, we can view the crowd from a bird’s eye view – but should

we? Maybe it is beneficial for each agent to perceive its surroundings from its own reference frame?

Similarly, should the agents follow dynamics similar to video games, or perhaps more inspired by

real-world mechanics? Finally, how should we structure the reward function? Is it really enough

to find something that seems to work well enough, and just go with it?

In this thesis, we aim to shed some light on these questions. We believe that before building

ambitious, impressive animations, it is important that the RL crowd paradigm stands on a solid

11

foundation. We hope that this work enables faster and more reproducible work on simulating

crowds with RL in the future.

1.1 Objective

In many domains, there is a clear question to be answered. Take for instance object detection in

computer vision – it is fairly simple to define what success is, both intuitively and numerically.

Even general-purpose RL is fairly well-specified– we assume that an environment is given as part

of the problem statement, so obtaining higher average rewards than previous algorithms is a clear

example of progress.

However, when exploring RL for crowd simulation, we do not have this luxury, and must

instead take a step back to ask “What is the question?” Before building the simulation, we need

to choose the right level of abstraction. On one end of the spectrum, we could have a fully

physically-simulated world, where each agent acts by contracting its accurate virtual muscles.

Would that work? Absolutely. Would that work efficiently, with our current level of knowledge

and technology? Absolutely not. On the other side of the spectrum, we could represent the crowd

as a liquid, focusing on its statistical properties – an approach that is not uncommon in the wider

domain of simulating huge crowds.

After choosing the right abstraction level, we still have to make some decisions on how to

setup the simulation. Even with the full physical simulation, while we used an example of muscle

contractions, perhaps neuronal activations would be more realistic? Fortunately, this is beyond the

scope of this work, but it demonstrates the overall challenge – nothing is as simple or as obvious

as it seems, and there are always choices to be made. In this thesis, we seek to make those choices

explicit rather than implicit.

1.2 Methodology

This thesis focuses on the intersection of crowd simulation and RL, and as such uses ideas from both

of these, largely independent, fields. Throughout the work included here, we use a combination

of mathematical, numerical and empirical methods to validate our ideas and findings for how to

simulate human-like crowds.

We focus on simulating the time-dependent trajectories of virtual agents. This means that

anything below that level – footsteps, body orientation, limb positions etc. are abstracted away

and considered outside of the scope of this work. Instead, we train our agents to efficiently and

dynamically choose their trajectories (including the pace) as they navigate through their world.

The details of effectively using this level of abstraction are the main focus of this thesis.

On the RL side, we use a consistent implementation of the Proximal Policy Optimization

(PPO) algorithm, written specifically for this thesis. The algorithm is applied independently to

each agent in the multiagent crowd setting, with each agent serving as an unpredictable obstacle for

its neighbors. The simulation itself is built in Unity to enable seamless integration with standard

animation tooling.

12

1.3 Thesis structure

The following chapters correspond to papers written during the preparation of this thesis.

Chapter 2 is based on “A Survey on Reinforcement Learning Methods in Character Anima-

tion” [84] and provides an overview of applications of RL to character animation as a whole, with

special emphasis on crowd simulation.

Chapter 3 is based on “Understanding reinforcement learned crowds” [87] and contains an

initial exploration of the basic design choices necessary in any RL-based crowd simulation system,

focusing on observation and action spaces.

Chapter 4 is based on “Reward Function Design for Crowd Simulation via Reinforcement

Learning” [85] and delves into the details of designing a reward function for navigation, which can

be used as an objective for the RL training.

Chapter 5 is based on “UGAE: A Novel Approach to Non-exponential Discounting” [86] and

describes theoretical properties of non-exponential reward discounting, along with a practical al-

gorithm to use non-exponential discounting with modern RL algorithms.

Finally, Chapter 6 summarizes the work and concludes the thesis.

1.4 Publications

International Conferences

• A. Kwiatkowski, V. Kalogeiton, J. Pettré, M-P. Cani. Reward Function Design for

Crowd Simulation via Reinforcement Learning MIG 2023 [85]

International Journals

• A. Kwiatkowski, V. Kalogeiton, J. Pettré, M-P. Cani. Understanding reinforcement

learned crowds Computers & Graphics, Volume 110, 2022 [87]

(this paper was selected and extended from a conference paper presented at MIG2022)

• A. Kwiatkowski, E. Alvarado, V. Kalogeiton, C. Karen Liu, J. Pettré, M. Van de Panne, M-

P. Cani. A Survey on Reinforcement Learning Methods in Character Animation.

Eurographics STAR, Computer Graphics Forum 2022 [84]

Workshops and Dissemination

• AAAI-23 Workshop on Multi-Agent Path Finding

• AAAI-22 Doctoral Consortium

Preprints

• A. Kwiatkowski, V. Kalogeiton, J. Pettré, M-P. Cani. UGAE: A Novel Approach to

Non-exponential Discounting [86]

Software

• Coltra-RL A flexible and modular implementation of multiagent PPO [82].

Available at github.com/redtachyon/coltra-rl

• CrowdAI Unity-based configurable crowd simulation designed for RL training [83].

Available at github.com/redtachyon/CrowdAI

13

github.com/redtachyon/coltra-rl
github.com/redtachyon/CrowdAI

14

Chapter 2

State of the Art

This thesis is centered around crowd simulation, primarily seen through the lens of character

animation, which in turn is a part of computer graphics. With this perspective in mind, it is

worthwhile to be aware of the overall field of character animation in graphics. This is the goal

of the following chapter, based on the paper “A survey on reinforcement learning methods in

character animation” by Kwiatkowski et al. [84]. We cover the state of the art in using RL for

character animation, serving as a foundation for my work.

We begin by providing a general context of the field (Sec. 2.1), followed by some of the most

recent challenges in character animation (Sec. 2.1.1). Then, we present the key principles and no-

tations in RL (Sec. 2.2), and continue with a general classification of the most common approaches

(Sec. 2.3). Subsequently, we divide the addressed RL solutions into two groups: single-agent

(Sec. 2.4) and multi-agent (Sec. 2.5) problems. Then, we describe how these methods are used

to solve computer animation problems, for skeletal motion control (Sec. 2.6) and navigation prob-

lems (Sec. 2.7), as well as some works concerning interactions between virtual agents and humans

(Sec. 2.8). Finally, we present a description of current, available frameworks to apply RL-based

solutions (Sec. 2.9), before concluding with a summary of the most relevant algorithms used for a

particular problem.

2.1 Introduction

Modern Machine Learning is commonly divided into three categories: Supervised Learning (SL),

Unsupervised Learning (UL), and Reinforcement Learning (RL). Supervised Learning refers to

learning using data with labels, Unsupervised Learning, including Self-Supervised Learning makes

use of raw data without labels, and Reinforcement Learning does not use data in the usual sense.

Instead, the learning stage in RL consists of an agent taking a sequence of actions in one or

more environments, and trying to maximize a reward function dependent on the states it visits.

During this process, the agent progressively trains its own controller module, which in the case of

Deep Reinforcement Learning (DRL) is represented by a deep neural network. Once learned, the

network can be used in a new, and possibly evolving environment, to make the agent take actions

in a successful way towards its goals.

RL stands out as a promising approach for character animation because it provides a versatile

framework to learn motor skills without the need of labelled data. RL is particularly useful when

the dynamic equations of the environment are unknown or non-differentiable, to which conventional

15

gradient-based optimal control algorithms do not apply.

Compared to traditional methods in AI, the designer does not need to specify what the character

should do in each case – a time-consuming and non scalable method. In contrast, the agent will

discover the appropriate actions during the learning stage, given the targeted task or goals expressed

in the form of a reward function.

This survey reviews the most common modern DRL algorithms, and how they can be used to

tackle the main challenges in character animation. We consider two main categories of tasks –

individual motion skills, and motion planning tasks. Individual scenarios typically involve skele-

tal motion control of a physically-based character, while motion planning often involves multiple

characters interacting in a shared environment. In particular, we focus also on the problem of

crowd simulation, which focuses on determining the trajectories of multiple agents in a shared

environment, often abstracting away their internal structure.

Our work is largely complementary to a recent survey on deep learning for skeleton-based human

animation [117], which we also recommend to readers. In particular, we provide a detailed review

of current RL methods (both single agent and multiagent) and their mathematical foundations, a

full review of RL methods for character navigation methods, and a complementary classification

of physics-based character RL methods.

2.1.1 Problems in Character Animation

In the most general sense, the field of Character Animation concerns everything related to

animating virtual characters. In this work specifically, we focus on the aspects of behavior of

said agents, on their skeletal motion control, as well as on their interactions with a possible

human user. Topics related to modeling and animating the character’s face, skin, muscles, hair

and clothes, or rendering it are out of scope of this report.

When dealing with a single animated character (which may also encompass situations with

several independent characters), there are two main levels that need to be considered:

• Skeletal Animation

• Character Motion Planning

Skeletal Animation deals with internal motions of an agent – how the individual limbs move,

while the position in the global frame may be of secondary concern. Character Motion is the oppo-

site – it abstracts away the details of the character’s shape, instead focusing on its displacements

through the scene.

When considering Character Motion for multiple interacting characters, the problem turns into

that of Crowd Simulation. Typically, in those problems, each agent has a destination it wants

to reach, while avoiding collisions with the environment and with other agents. Van Toll and

Pettré [167] wrote an overview of the modern approaches from the last decade.

2.2 Definitions and Preliminaries

In this section, we introduce the basic formal background of Reinforcement Learning. First, we

describe and compare different ways of formalizing the RL task to specify what we want to solve.

Then, we describe the fundamental theorems supporting modern RL methods to show how we

can solve those tasks.

16

Agent

Observation

Environment

Figure 2.1: A visual depiction of the basic Reinforcement Learning loop corresponding to the
POMDP formalism. The agent and the environment exchange information between each other.
The agent perceives the environment state and executes an action. The environment then updates
its state, and communicates it to the agent via an observation function, together with the reward
for the last action.

2.2.1 Reinforcement Learning Formalisms

While there exist several frameworks that are used to formalize the Reinforcement Learning prob-

lem, they are based on the Markov Decision Process [14, 159, 160] (MDP), with variations adapting

it to the specific task at hand. In this section, we describe the variants relevant to character ani-

mation, both for individual agents, as well as multiagent scenarios.

In essence, a Reinforcement Learning problem consists of two parts – an environment, and

an agent acting within that environment in order to achieve some goals. The agent observes the

environment, receiving its state or observation, and based on that executes an action. The

state of the environment then changes, and the agent receives a reward signal indicating how good

that action was. The agent’s objective is maximizing the total reward collected during an episode.

An episode starts from an initial state, and lasts until the agent reaches a terminal state, or the

environment terminates otherwise (e.g. due to a time limit). A schematic representation of this

loop is in Figure 2.1.

Single Agent

A general Markov Decision Process (MDP) is defined by a tuple M = (S,A, T,R, µ), option-

ally with a sixth component γ (which can also appear in all other formalisms, and hence will be

omitted from their descriptions), where:

• S is a set of states of the environment.

• A is a set of actions available to the agent.

• T : S ×A → ∆S is the environment transition function, representing its dynamics.

17

• R is the reward function, defined either as S → R, S × A → R, or S × A × S → R, which

defines the agent’s task.

• R : S ×A× S → R is the reward function which is used to define the agent’s task.

• µ ∈ ∆S is the initial state distribution.

• γ ∈ [0, 1] is the discount factor.

Note that we use the notation ∆X to represent for the set of all probability distributions over the

set X.

During an episode, an initial state s0 ∈ S is sampled from µ. The state is typically represented

by a continuous vector in Rn, or in simple cases, a discrete value. After which the agent repeatedly

selects an action at from A, observes a new state st+1 ∼ T (st, at) and receives a reward rt =

R(st, at, st+1). The actions, similarly to observations, are typically continuous vectors or discrete

values, although more complex nested structures are also used. This can repeat infinitely, or until

some termination condition, defined either by a terminal state in S, or a time limit. The agent’s

objective is maximizing the total discounted reward
∑

t γ
trt, or simply non-discounted total

reward
∑

t rt when γ = 1.

The solution to an MDP is defined as an optimal policy, typically denoted as π∗ : S → ∆A.

It is the policy that, when executed, leads to the highest expected total discounted reward. While

a policy may be stochastic or deterministic, depending on the properties of the action distributions

it outputs, note that the optimal policy is generally stochastic, i.e. it returns a distribution over

actions rather than a specific action. For consistency, the notation we use in this work is that the

action distribution of a policy π in a given state s is π(s), whether that policy is stochastic or not.

The action is then sampled from the policy a ∼ π(s). An alternative notation uses the notion of a

conditional probability of the action given the current state π(a|s), and is equivalent to ours.

A key property of MDPs is their full observability - agents have complete information of the

current environment state. This is rarely the case in real applications, and thus a Partially

Observable Markov Decision Process [74] (POMDP) is often used instead.

A POMDP is defined by a tuple M = (S,A, T,R,Ω, O, µ), where S,A, T,R, µ are defined as

in MDPs. Ω is a set of possible observations, and O : S → ∆Ω is the observation function mapping

states to observations. This time, the agent does not perceive the real state st of the environment,

but rather the observation ot ∼ O(st) which may not contain the full information, hence the partial

observability.

Multiagent

While the MDP and POMDP formalisms are sufficient for problems with a single agent, the

generalization to multiple agents can be done in different ways depending on the extent of flexibility

required for a given application. The most general case is a Partially Observable Stochastic

Game [50] (POSG) which is defined as a tuple M = (I,S, {Ai}, {Ωi}, {Oi}, T, {Ri}, µ), where:

• I is the finite set of agents, indexed 1, . . . , n

• S is a set of states of the shared environment.

• Ai is a set of actions available to agent i, and A = ×i∈IAi is the joint action set.

• Ωi is the set of observations available to agent i.

18

• Oi : S → Ωi is the observation function for agent i.

• T : S ×A → ∆S is the environment transition function, representing its dynamics.

• Ri : S ×A× S → R is the reward function of agent i, which defines the agent’s task.

• µ ∈ ∆S is the initial state distribution.

Similarly to the single-agent scenario, the environment is initialized with a state s0 sampled

from µ. Each agent then receives an observation oit = Oi(st) and based on that, chooses an

action ait. The environment changes according to the joint action of all agents at = (a1t , a
2
t , . . . , a

n
t)

generating the new state st+1, and each of them then receives their rewards rit = Ri(st, at, st+1)

and observations oit+1. This repeats until the episode ends. Since each agent receives its own

reward, the objective of an agent i is maximizing its total reward
∑

t r
i
t.

A special case of POSG is a Decentralized Markov Decision Process [17] (DecPOMDP)

in which all agents work together to optimize a shared reward function ∀iRi = R. This formalism

is suitable for fully cooperative tasks. It is worth noting that any POSG can be converted into

a POMDP by setting the reward to be equal to the sum of of individual rewards, but it will not

make sense in all POSGs (consider for example any zero-sum game).

An alternative, but equivalent to POSG formulation, is the Agent Environment Cycle

Game [165] (AEC) formalism. As opposed to the previous options, it is more adapted to dealing

with environments in which agents do not act simultaneously. Formally, an AEC is defined by a

tuple M = (I,S, {Ai}, {Ωi}, {Oi}, P, {Ti}, {Ri}, ν, µ), where Ti : S × Ai → S is a deterministic

agent transition function, P : S → ∆S is the environment transition function, ν : S ×I ×A → ∆I
is the next agent function which determines which agent will be taking the action next. The other

symbols are defined as before, with the exception of I which now also includes environment itself

considered as a separate agent, represented by the symbol 0. Furthermore, A is now an union of all

individual action spaces. All agents, including the environment, take turns taking their actions and

modifying the shared state, which enables a greater flexibility compared to the POSG formalism.

AEC environments are primarily used in the Petting Zoo framework [164] (see Section 2.9).

In some cases, a more game theory-based approach is useful. The Extensive Form Game [88]

(EFG) formalism is notably used in the OpenSpiel framework. It contains implementations of

many board games, which is the context that it excels in. However, it is not very applicable to

character animation, and thus we refer the reader to the associated paper for further details on

this formalism.

Note: Many details of the described formalisms vary between sources in the ordering of their

elements, the size of the tuple, and the signatures of the functions. This does not change the

underlying behavior, and we will therefore omit discussing the different descriptions of the same

formalism.

Environment design

A crucial element when applying RL to new problems is designing an appropriate environment.

This often involves building a simulation that implements the common API of Gym (see Sec-

tion 2.9.2), since a purely mathematical formulation would quickly become very convoluted in

a complex scenario. Note that we omit the transition function from this description, as this is

typically part of the underlying simulation, and can therefore be implemented in any way.

19

The first consideration is the observation space. This is commonly represented as a fixed-size

vector space Rn, which can be directly used with regular feed-forward neural networks. More

complex nested structures as well as images are also possible, but they require an adaptation in

the structure of the policy being learned.

Second comes the action space. Depending on the environment, a common choice is either a

vector space Rn, or simply a finite set of actions |A| = n < ∞. While from the point of view

of the implementation it is important that the action space remains constant between different

states, one can employ invalid action masking to restrict the available actions to a specific subset.

Similarly to observations, it is also possible to use nested structures as long as the policy is adapted

correspondingly.

Finally, the reward function defines the actual task and guides the agent’s behavior. This

is often the most critical component to develop, as a misspecified reward function can lead to

unexpected and undesirable behaviors. The simplest reward function can be obtained by choosing

a goal state, and giving the agent a reward of 1 if it reaches that state, or 0 otherwise. However,

this sparse reward tends to make it very difficult for the agent to learn, as it needs to reach it

with random exploration to receive any training signal. A common method is then using reward

shaping [119] by adding a smaller, dense reward that guides the agent towards the goal. In other

cases, there might be a natural dense reward that can be used instead of the sparse one, such as

the distance from the goal in environments with relatively simple dynamics.

Summary

Table 2.1: A comparison of different formalisms used to define an RL problem. Legend: × – the
property cannot be modelled in this formalism, ∼ – the property can be modelled in this formalism,
but is not the intended use or requires extra effort, ✓ – the property can be modelled in this
formalism, ⋆ – this formalism is particularly suitable for this property. Multiagent Cooperative
and Competitive refers to the rewards being either shared or zero-sum, respectively. Multiagent
Mixed is neither fully cooperative nor competitive. Simultaneous and Turn-based refers to whether
all agents take their actions at the same time, or only one agent does.

Property MDP POMDP POSG DecPOMDP AEC EFG
Single Agent ⋆ ⋆ ✓ ✓ ✓ ✓

Multiagent Cooperative × × ✓ ⋆ ✓ ✓
Multiagent Competitive × × ✓ × ✓ ✓

Multiagent Mixed × × ⋆ × ⋆ ⋆
Multiagent Simultaneous × × ⋆ ⋆ ∼ ∼
Multiagent Turn-based × × ∼ ∼ ⋆ ⋆
Partial Observability × ⋆ ✓ ✓ ✓ ✓

Full Observability ⋆ ✓ ✓ ✓ ✓ ✓

We presented the most commonly used formalisms underlying the RL problem, which serve

as a basis for finding ways to solve these tasks. The similarities and differences between them

are in Table 2.1. Typically, either MDP or POMDP can be used with a single agent. POMDP

offers stronger theoretical justification if the agent does not observe the full environment state, but

this high rigor is not always necessary. Instead, MDP is often used due to its simplicity. With

multiple agents, POSG is a versatile choice that can work with any scenario. If one needs to put

an emphasis on some aspect of the environment, other options are also available. It is worth noting

that those formalisms have dynamic programming solutions associated with them for cases with

20

discrete action and state spaces. This however is impractical in complex scenarios that emerge in

character animation, requiring more sophisticated algorithms.

2.2.2 Fundamentals of RL Algorithms

In this section we describe the mathematical theorems underlying the most important RL algo-

rithms used today. Specifically, we show how the Policy Gradient Theorem enables directly

optimizing a behavior policy function, and the Bellman Equation enables learning the expected

utilities of actions that the agent can take in a certain state. These will serve as a basis for many

modern algorithms, which often combine the two aspects. We use the notation of MDPs described

in Section 2.2.1 because they provide sufficient generality. Under partial observability, states are re-

placed with observations, and multiagent extensions of relevant algorithms are discussed in Section

2.5.

In both cases, modern algorithms use Neural Networks as approximators for the relevant func-

tions. Because a detailed explanation of training neural networks is out of the scope of this work,

we refer the readers to e.g. the Deep Learning Book [40] for more information on that topic.

Policy Gradients

The Policy Gradient Theorem is a basis for all Policy Gradient (PG) algorithms, starting with

the seminal REINFORCE algorithm [161]. In the context of deep reinforcement learning, the

policy π : S → ∆A is represented as a neural network, and its free parameters, e.g., the weights,

are optimized using gradient ascent on the total expected reward. In order to do that, we need

to find the gradient with respect to the network’s weights using a batch of collected experiences.

Here we show a proof of the theorem based on that published in OpenAI Spinning Up [2], although

other approaches for proving the same result exist [180, 72].

Consider a trajectory in the environment, defined as a sequence of consecutive states and actions

taken by the agent, and rewards τ = (s0, a0, r0, s1, a1, r1 . . .). Given the parametrized policy πθ,

we know that the probability of a trajectory is

P (τ) = µ(s0)
∏
t

P (st+1|st, at)πθ(at|st) (2.1)

logP (τ) = logµ(s0) +
∑
t

(logP (st+1|st, at) + log πθ(at|st)) (2.2)

and the total reward obtained in the trajectory is R(τ) =
∑

t rt

Consider now the expectation across all trajectories τ . With the optimization target defined as

J(θ) = Eτ∼πθ
R(τ), using a few calculus transformations, we can express the policy gradient as:

21

∇θJ(θ) = ∇θ E
τ∼πθ

R(τ) (2.3)

= ∇θ

∫
τ

P (τ |θ)R(τ) (2.4)

=

∫
τ

∇θP (τ |θ)R(τ) (2.5)

=

∫
τ

P (τ |θ)∇θ logP (τ |θ)R(τ) (2.6)

= E [∇θ logP (τ |θ)R(τ)] (2.7)

= E
τ∼πθ

[∑
t

∇θ log πθ(at|st)R(τ)

]
(2.8)

With this, given a batch of trajectories D collected using the policy we are optimizing, we can

finally compute the gradient estimate:

ĝ =
1

|D|
∑
τ∈D

∑
t

∇θ log πθ(at|st)R(τ) (2.9)

Note that this is merely the base form of the theorem, and various modifications are possible,

most notably in the form of importance sampling [140], or adding a baseline to the reward R(τ).

Some of these are discussed in the context of specific algorithms that use them in Section 2.4.

Bellman Equation

The Bellman Equation [15] is a basis for all value-based algorithms. Unlike the Policy Gradient

method, here we do not learn a policy directly. Instead, we try to approximate a state value

function V (s) or a state-action value function Q(s, a). The former estimates the expected reward

that the agent will collect in the future, given that it is present in a given state s. The latter

estimates the same quantity, but given that the agent will take the specific action a in the state

s. Then, we use these functions to generate a policy by choosing the best action in a given state.

With a state value function V , this requires access to the environment transition function, which is

not necessary with a state-action value, where the policy is simply given by a = arg maxa′ Q(s, a′).

The value function Qπ (or analogously V π) associated with a policy π represents the expected

total reward if the agents is in a given state s, takes a certain action a (a ∼ π(s) for the state value

function), and then proceeds by following the policy π for the rest of the episode.

V π(s) = E
at∼π

[∑
t

γtrt|s0 = s

]
(2.10)

Qπ(s, a) = E
at∼π

[∑
t

γtrt|s0 = s, a0 = a

]
(2.11)

The Q (or V) values of different state-action pairs (states) are obviously not independent –

they are in fact related via the transition function, which determines what state comes after them.

This is formalized by the Bellman Equation, which defines the consistency criterion of a Q (or V)

function (Equations 2.12, 2.14), and the optimal function Q∗ (or V ∗) (Equations 2.13, 2.15):

22

V π(s) = E
a∼π
s′∼T

[R(s, a) + γV π(s′)] (2.12)

V ∗(s) = max
a

E
s′∼T

[R(s, a) + γV ∗(s′)] (2.13)

Qπ(s, a) = E
s′∼T

[
R(s, a) + γ E

a′∼π
Qπ(s′, a′)

]
(2.14)

Q∗(s, a) = E
s′∼T

[
R(s, a) + γmax

a′
Q∗(s′, a′)

]
(2.15)

The intuition behind these equations is that the value of a state is equal to the instant reward

obtained at that state, and the discounted expected value of the following state – which also

includes the value of the state after that (due to the recursive nature of the equation), and so on

until a terminal state. The value of a terminal state is typically considered to be 0, however a

different convention may be used in certain cases, e.g. if the episode timed out. It also induces a

dynamic programming solution of MDPs through the Value Iteration algorithm [160]. It is however

inapplicable or impractical for many modern problems with complex state and action spaces, and

instead, the Bellman Equation is used as the source of a differentiable loss function for value-based

algorithms, as we describe in detail in Section 2.4.

It is worth noting that by using a Q function estimator Q̂π, we can obtain an alternative

formulation of the Policy Gradient Theorem. Indeed, as shown by Sutton et al. [160], we get the

following expression for the policy gradient:

ĝ =
∑
s

dπ(s)
∑
a

∇π(a|s)Q̂π(s, a) (2.16)

where dπ(s) is the marginal state distribution under the policy π. This formulation does not

use individual transitions, but instead relies on statistics of the policy’s performance, and can thus

be used as an alternative algorithm to estimate the policy gradient.

2.2.3 Reward Hypothesis, Discounting, Advantage

It is worth taking a closer look at the assumption underlying all Reinforcement Learning research,

sometimes called the Reward Hypothesis. It is formulated by Richard Sutton as “That all of

what we mean by goals and purposes can be well thought of as maximization of the expected value

of the cumulative sum of a received scalar signal (reward)” [160]. This is reflected in the described

formalisms and equations by the inclusion of a reward function R, with the goal of agents being

maximization of the total reward obtained over their lifetime. Some argue that just the reward

signal is sufficient to represent any goals that intelligent agents might have [150], while others point

out that certain objectives cannot be represented with a single scalar reward [5]. That being said,

as we focus specifically on Reinforcement Learning in this work, we do not consider alternative

formulations – but it is possible that they will become more relevant in the coming years as the

field continues to develop.

An important element related to the reward function is the discount factor mentioned in the

description of an MDP in Section 2.2.1. It can be considered either as a property of the environ-

ment, or the learning agent, and while the two views are mostly equivalent from the optimization

23

RL Algorithms

Single Agent

Policy
Optimization Q-learning

REINFORCE

TRPO

PPO

DDPG

TD3

SAC

DQN

Rainbow

Multiagent

Policy
Optimization Q-learning

MAPPO
MADDPG

QMIX

Figure 2.2: A diagram showing a taxonomy of the Reinforcement Learning algorithms described in
this work. We focus on two divisions: single agent or multiagent, and policy-based or value-based.
The colors of nodes correspond to whether the algorithm is on-policy (red), off-policy (blue), or
in between (green). Algorithms marked with an asterisk (∗∗∗) can only be used with discrete action
spaces.

point of view, they have potential implications relating to the Value Alignment problem [152]. If

we consider the discount factor to be a property of the MDP, this is the real reward we want the

agent to optimize, whereas otherwise, we really want to optimize the total reward, and discounting

the rewards helps improve the training in some way, e.g. as a form of regularization [8]. It can also

impact the range of methods that we can use – when considered as a part of the learning agent,

any arbitrary method of reward discounting can be used, including non-exponential methods such

as hyperbolic [36] or truncated [89] discounting.

One issue with using the raw rewards/utility for training is that it is an absolute metric, with

no a priori point of reference. If the agent only perceives a single timestep where a certain action

a0 leads to a reward of −1, this action’s probability will be decreased as the value is negative.

However, it could still be the optimal action if the counterfactual rewards due to taking other

actions are even lower. Asymptotically, this is all balanced out due to the fact that decreasing

the probabilities of other actions will necessarily increase the probability of a0. To decrease the

variance of gradient estimation, some algorithms use the notion of Advantage instead. This often

results in more stable and efficient training. Intuitively, advantage measures how much a certain

action is better (or worse) than expected. Given both the Q and V function approximations, we

define the advantage as:

A(s, a) = Q(s, a) − V (s) (2.17)

In practice, algorithms that use advantage often compute Q(s, a) from collected experience, i.e.

, look at the trajectory and compute the total reward, while V (s) is approximated with a separate

neural network. Examples of this are included in Section 2.4.

24

2.3 Classification of RL Algorithms

In this section we describe the main categories of modern RL algorithms. While the division is not

clear-cut and many algorithms at least draw on ideas from other types, we nevertheless consider

this classification to be useful for building an intuition of the RL algorithm landscape. A diagram

classifying the algorithms described in this work is in Figure 2.2. The details of these algorithms

are provided in Sections 2.4 and 2.5.

2.3.1 Policy-based or Value-based

The first axis of division is whether the algorithm is policy-based (PB) or value-based (VB).

Although the state-of-the-art algorithm often use both components via Actor-Critic architectures,

oftentimes they still have one part that is dominant in the overall picture. The difference between

PB and VB algorithms is in what the model is actually trained to predict. In pure PB algorithms

such as REINFORCE [180, 161], the neural network is trained to directly output the action that

will maximize the expected future reward. On the other hand, pure VB algorithms like Deep Q

Learn ing (DQN) [113] train the network to instead output the value of each action in a given

state, that is the expected future reward. This works in environments with a discrete action space,

because a policy can then be generated by taking the action with the maximum expected value.

2.3.2 Actor-Critic

Very commonly, RL algorithms use the so-called Actor-Critic architecture, which involves training

two networks. One, the Actor, also called the policy, is responsible for predicting the action that

the agent should take, as in PB algorithms. The other, the Critic, is responsible for predicting

the value of an action in a given state, as in VB algorithms. The outputs of the two networks,

while not always in agreement with each other, can be used to improve the training process in ways

that depend on the exact algorithm – for example, by using the value prediction as a baseline for

advantage estimation as in PPO [144], or by training the Actor to find the action with the highest

value predicted by the Critic in order to use value-based methods in continuous action spaces as

in DDPG [99].

2.3.3 On-policy or Off-policy

Another point of difference between RL algorithms is the data used for the optimization process,

which does not necessarily have to be obtained with the same policy that is being learned. We

normally refer to the target policy as the policy that is being optimized and will be used for

evaluation, and the behaviour policy as the policy used by the agent to select actions and

explore the environment. In on-policy algorithms like REINFORCE, the neural network can only

be trained using data collected with the policy that is being optimized, meaning that the behavior

policy matches the target policy. This implies that after performing a single gradient update, the

data (in theory) has to be discarded. On the other hand, in off-policy algorithms like DQN, any

data (trajectories) can be used, regardless of how it was generated (target and behaviour policies

can be different). Some algorithms like PPO toe the line between being on-policy and off-policy, by

allowing a relatively small number of gradient updates before the data has to be discarded by using

tricks like importance sampling and clipping the loss function. Nevertheless, these algorithms are

25

typically considered to be on-policy, as they cannot use data collected by an arbitrary behavior

policy.

Typically, on-policy algorithms use a rollout buffer which stores the environment transitions

collected with the current policy, and is emptied after performing the gradient update. Off-policy

algorithms instead use an experience replay buffer, which stores older transitions, replacing

the oldest ones once it reaches maximum capacity.

2.3.4 Model-free or Model-based

This division relies on whether or not the learning agent has access to a model of the environment

T (s, a). In Model-free approaches like DQN, PPO or DDPG, the agent learns in a true trial-

and-error fashion – it has no way of “knowing” the consequences of an action until it tries it, and

observes the outcome. On the other hand, Model-based approaches additionally learn a model

of the environment, allowing the algorithm to do something akin to traditional planning algorithms

by considering potential future states and actions, without actually having to execute them in the

environment. This is famously present in the AlphaZero [149] algorithm that achieved superhuman

performance in the game of Go, where one of the components is the Model-based Monte Carlo

Tree Search (MCTS) [30]. While Model-based approaches can provide an advantage in planning

terms, the effectiveness of the agent will be limited by the quality of the learned model, which

can be negatively affected if the environment is very complex, which is often the case in character

animation. This is not the case with Model-free approaches, which do not require an accurate

characterisation of the environment to be effective, although they lack the ability to explicitly

foresee future states and actions. In this work, we focus on model-free algorithms due to their

relevance to character animation.

2.3.5 Single-agent or Multiagent

Finally, an algorithm can be designed to work with either one agent, or multiple agents sharing the

same environment. While most of RL development focuses on single-agent algorithms, those can be

extended to become multiagent algorithms through Independent Learning (see Section 2.5.1). In

competitive multiagent scenarios, algorithms typically use the concept of self-play, training against

(possibly old) copies of themselves so that they can be robust when matched with a wide range of

opponents. In cooperative scenarios, a common trend is introducing some type of centralization of

information so that the agents can coordinate more effectively.

2.3.6 Summary

Looking at modern RL algorithms, it is difficult to cleanly separate them into different categories.

Many of the most successful approaches combine different concepts, resulting in an algorithm that

is, technically speaking, actor-critic and off-policy. That being said, if we are content with the

definitions being fuzzy, we can still gain useful insights about the differences between them.

Typically, value-based algorithms are also off-policy, and enjoy higher sample efficiency com-

pared to policy-based ones. This is because any environment transition, once generated, can be

used in perpetuity in multiple gradient updates. Conversely, policy-based algorithms like PPO

make it possible to perform fewer gradient updates, because they involve optimizing the objective

function directly through gradient ascent. This indicates that value-based methods can be better

26

when it is difficult to obtain additional data, whereas policy-based methods can often be trained

with smaller hardware needs, as they require fewer network updates.

2.4 Single-agent RL Algorithms

In this section we provide descriptions of the most important modern RL algorithms. Due to the

large quantity of different methods that appeared in the recent years, this is not meant to be a

comprehensive list of all algorithms that could be applied in character animation, but rather the

ones with the most relevance, either to this application in specific, or for the field in general. We

also provide a sufficient amount of detail for the reader to grasp the main ideas of the algorithms,

but refer them to the source papers for the remaining information. Specifically, we do not aim to

include sufficient information that would make it possible to reimplement the algorithms without

referring to the main paper or existing implementation, as that tends to be a very complex process,

with many details being important.

2.4.1 DQN

The first algorithm we discuss is Deep Q Network (DQN) [113], which gained prominence

when it was used to master a suite of Atari games, achieving superhuman performance in some of

them, drawing significant attention to the field. It is a prime example of a Value-based, Off-policy

algorithm, and is remarkably simple in its basic form, allowing for a plethora of modifications which

we discuss further in this section. DQN is a modern version of the older Q-Learning algorithm [176]

which relies on the same principles, but only works on tabular domains (i.e. with a finite number

of states and actions).

In DQN, the agent is defined by a state-action value function Q(s, a), represented with a neural

network, which is then trained to approximate the real optimal Q function of the environment.

This is achieved by performing gradient descent on a Bellman loss function, defined as

Li(θi) = E
s,a∼ρ(·)

[
(yi −Q(s, a; θi))

2
]

(2.18)

yi = E
s,a∼ρ(·)
s′∼T (s,a)

[
R(s, a) + γmax

a′
Q(s′, a′; θi−1)

]
(2.19)

where i is the current training iteration, θi are the weights of the neural network, and ρ is the

probability distribution over state-action sequences according to the behavior policy. Intuitively,

the network is trained in a way similar to supervised learning, with the target being the empirical

Q value of a given state-action pair, obtained by executing the policy and estimating the future

utility using the same current Q function estimate. Typically, an automatic differentiation software

is used to find the gradient of the loss function with respect to the network weights θ, leading to

the actual parameter update proportional to ∇θL(θ)

In order to ensure sufficient exploration, DQN uses ϵ-greedy sampling. This means that given a

value of ϵ ∈ [0, 1], then while collecting data for optimization, the agent will choose a random action

with a probability of ϵ, and the optimal action (according to the current Q function estimate) with

a probability of 1− ϵ. Commonly, ϵ is treated as a constant during a single training iteration, and

progressively reduced to 0 as the training proceeds.

27

DQN also uses a replay buffer – the collected data is stored and reused throughout the training,

which is possible because DQN is an Off-policy algorithm. So the general flow of the algorithm is

as follows. First, collect a batch of data using the current behavior policy (defined by the weights

θi and some value of ϵ), and add that data to the persistent replay buffer. Then, sample some

data from the replay buffer, and perform gradient updates according to Equation 2.18. Repeat

this process, updating the weights and decreasing ϵ until convergence.

A crucial limitation of the DQN algorithm lies in the max operator of Equation 2.19. With

a discrete action space, finding the optimal action is easy – simply evaluate the function for each

action, and then choose the best one. However, when dealing with continuous action spaces, this

turns into a potentially non-trivial and nonlinear optimization problem, which in unfeasible to solve

each time the agent needs to choose an action, which means that effectively, DQN is limited only

to discrete action spaces. This can be avoided by changing the action space through discretization,

or changing the algorithm (see Section 2.4.8).

2.4.2 Rainbow

Over the last few years, many modifications of the core DQN algorithm have been developed,

aiming at various improvements to its performance. Six of them were combined in the Rain-

bow [57] algorithm:

1. Double Q-Learning [171]

2. Prioritized Experience Replay [142]

3. Dueling Networks [175]

4. Multi-step Learning [158]

5. Distributional RL [13]

6. Noisy Nets [37]

The main ideas of them are as follows. Double Q-Learning trains two neural networks,

decoupling the action selection from evaluation, in order to mitigate the problem of the learned

Q networks overestimating the utilities. Prioritized Experience Replay changes the way in

which old experience is sampled to optimize the Q network, so that more informative samples

(i.e. ones with large updates) occur more frequently. Dueling Networks have two computation

streams, one for the value, and one for advantage, with some of the weights shared between them.

Multi-step Learning involves a different way of bootstrapping the future rewards, by looking a

few steps ahead (as opposed to just one). Distributional RL has the algorithm learn to predict

the distribution of rewards, as opposed to just the mean reward itself. Finally, Noisy Nets

improve exploration by using partially stochastic linear layers. For further details on each of these

modifications, we refer the reader to the relevant papers.

Overall, Rainbow agents generally train faster and reach a higher performance than the baseline

DQN agents. This comes at the cost of implementation complexity, with only some of the standard

frameworks supporting it (see Section 2.9), whereas DQN is very common, and relatively easy to

implement in its basic form even for beginners.

28

2.4.3 REINFORCE

Similarly to how DQN is the simplest Value-based algorithm, REINFORCE [180, 161] is the

original Policy-based method that is used with neural networks as function approximators. In its

simplest form, it is a direct implementation of the Policy Gradient Theorem (see Section 2.2.2). It

involves training a neural network to directly approximate the optimal stochastic policy π : S →
∆A, so that the expected total reward is maximized. This process is performed in an On-policy

manner, with a fundamentally simple basic training loop:

1. Execute the policy and collect a batch of experience.

2. Perform a single gradient update of the policy and discard the data.

3. Repeat (1) and (2) until convergence.

REINFORCE can employ some improvements to a naive implementation of the Policy Gradient

Theorem. Recall the general policy gradient estimate:

ĝ =
1

|D|
∑
τ∈D

∑
t

∇θ log πθ(at|st)R(τ) (2.20)

While the reward R(τ) is computed for the entire trajectory, it is reasonable that when consid-

ering the action at a step t0 > 0, we disregard the rewards obtained before, i.e. for t < t0, since the

action at t0 could not have affected them. Furthermore, subtracting a state-dependent baseline

from the reward does not change its expectation, which means we can use the advantage instead,

as defined in Section 2.2.3. This is useful as it decreases the variance of the gradient estimation,

leading to a faster and more stable training procedure.

The policy trained by REINFORCE is stochastic, which means that it outputs a distribution

over actions ∆A rather than a single action. During training, the agent samples an action from

the distribution in accordance with the policy gradient theorem. During deployment, it might be

desirable to use the deterministic optimal action (i.e. maxa∈A πθ(·|s)) for improved stability and

predictability of the agent. Typically, a stochastic policy with continuous actions is modeled by

a Normal (or Multivariate Normal for multidimensional action spaces) distribution. The neural

network then outputs the mean action µ, and the variance σ2 under the assumption that the indi-

vidual components of the action vector are uncorrelated. Alternatively, a global, state-independent

variance can be maintained in the model, and adjusted during the training. In the case of discrete

actions, the policy uses a Categorical distribution, with the neural network outputs corresponding

to their logits. Mixed action spaces are also possible, and can be modeled as joint distributions.

REINFORCE, as well as the algorithms based on it, can be trained as Actor-Critic algorithms.

The Actor is the policy network πθ which is responsible for the actual decision making, while the

Critic Vθ is trained using regular supervised learning techniques, and is responsible for the value

estimation in computing the advantage.

2.4.4 TRPO

Trust Region Policy Optimization (TRPO) [143] is based on REINFORCE combined with

the notion of a Natural Policy Gradient [75]. It aims to improve the amount of utility that the

agent can obtain from a single batch of data. Recall that REINFORCE can only perform a single

gradient update with a batch of data, usually with a constant or decaying learning rate. If the

29

learning rate is too large, a small change in the policy weights can have a large impact on the

behavior of the agent, making it difficult to tune while still maintaining good training efficiency.

In TRPO, there are several approximations that deviate from the theoretically-justified RE-

INFORCE algorithm, but instead enable better practical performance. The key idea is the trust

region, which corresponds to a constraint on the allowed KL divergence between policies in con-

secutive training steps. The general (theoretical) TRPO update in the training step k + 1 is:

θk+1 = arg max
θ

L(θk, θ) (2.21)

s.t. D̄KL(θ||θk) < δ (2.22)

where δ is a hyperparameter defining the size of the trust region, and L is the surrogate advantage:

L(θk, θ) = E
s,a∼πθk

[
πθ(a|s)
πθk(a|s)

A(s, a)

]
(2.23)

which measures how the new policy performs compared to the old one. The most important

feature of this approach is that theoretically, the KL divergence constraint ensures monotonic

improvements with a sufficiently small δ, while still being more sample-efficient than REINFORCE.

Due to the arg max operator in Equation 2.21, each step is a constrained optimization problem,

which is infeasible to solve hundreds or thousands of times throughout the training. For this reason,

the actual algorithm uses additional approximations, resulting in an efficient, but complex Policy

Gradient method. Due to this complexity, as well as the fact that other methods can be applied

on minibatches of data and are more efficient (see: PPO, Section 2.4.5), TRPO is rarely used in

practice.

2.4.5 PPO

Proximal Policy Optimization (PPO) [144] is the successor to TRPO, which through ad-

ditional simplifications and approximations achieves comparable performance, but with a signif-

icantly simpler implementation. It is the de facto standard Policy Gradient algorithm at the

moment, and is supported by all major libraries.

Its core idea is to take several gradient update steps with an importance sampling term, without

making the policy deviate too far from the original behavior policy. There are two main variants

of PPO: PPO-Clip and PPO-Penalty. The former introduces a clipping term to the relative action

probabilities in order to disincentivize large policy changes, as measured by KL divergence. The

latter adds a penalty term to the loss function for the same effect. In practice, the PPO-Clip

variant is more commonly used. Their respective loss functions are as follows:

LCLIP (θ) = E [min(rt(θ)At, clip(rt(θ), 1 − ϵ, 1 + ϵ)At)] (2.24)

LKLPEN (θ) = E [rt(θ)At − βKL[πθold(·|st), πθ(·|st)]] (2.25)

where ϵ is a hyperparameter, rt(θ) = πθ(at|st)
πθold

(at|st) is the probability ratio of the action, and β is a

coefficient which is adaptively adjusted during the training (if using the Penalty variant).

PPO typically uses an entropy bonus to improve exploration. This means that there is an

30

additional term in the loss function proportional to the entropy of the policy πθ, resulting in the

policy maintaining some randomness, even at the cost of efficiency.

PPO is an Actor-Critic algorithm, with the Critic being responsible for value estimation that

is then used to compute the advantages. The Critic network is typically trained by performing

gradient descent on a Mean Square Error loss function between its outputs, and the empirical

returns observed in the collected data.

While PPO is typically considered as an On-Policy algorithm, that is not entirely accurate.

A single PPO update typically involves several gradient updates, often performed on minibatches

of experience, after which the data is discarded as is the case in REINFORCE. This means that

while the data can be reused, it can only be done in a very limited way, unlike typical Off-Policy

algorithms.

It is worth noting that policy-gradient algorithms (REINFORCE, TRPO, PPO), tend to be

sensitive to the implementation details which we omit from this survey. This phenomenon is

analyzed in three large-scale studies, to which we refer interested readers: [55, 35, 9].

2.4.6 A3C, A2C

The Asynchronous Advantage Actor Critic (A3C) [114] algorithm, and its synchronous

equivalent Advantage Actor Critic (A2C) [183] are largely of historical value now. The key idea

of A3C is using multiple parallel copies of the environment, from which the data can be collected

asynchronously, without needing to synchronize them between episodes, or between individual

steps. This is meant to improve training efficiency by eliminating the time when an individual

worker has to wait for the main process to collect their experience and perform a gradient update.

When researchers continued working with A3C, they discovered that the asynchrony was not

a necessary component, but rather an implementation detail, so they developed a simplified, syn-

chronous version named A2C. This algorithm, in its essence, is very similar to REINFORCE with

specific details such as using multiple parallel copies of the environment, and using a learned base-

line for advantage estimation (which is not the original intent of REINFORCE, but is nevertheless

an option in it).

2.4.7 GAE

While it is not a Reinforcement Learning algorithm in the same sense that DQN and PPO are,

Generalized Advantage Estimation (GAE) [145] is a method that can be applied to any algo-

rithms which use the notion of advantage. It is heavily based on the concept of TD-lambda [158],

and can be seen as its extension using Advantages. In the simplest sense, given a trajectory with

rewards rt and a value estimation at each step Vt, we define the Monte Carlo advantage as:

At =
∑
i

γirt+i − Vt (2.26)

which is to say that we compute the expected total reward obtained by the agent, and subtract

its estimated value. To use this expression directly, we need a full episode, which in certain

environments might be infeasible or inefficient. Furthermore, as the sum of rewards depends on

many decisions that the agent has yet to take in the future, the variance of this advantage estimation

tends to be very large.

31

An alternative way is using Temporal Difference (TD) estimation by bootstrapping the

expected returns, using the value function itself. Like before, given the rewards rt and value

estimations Vt, we define the TD advantage, or one-step advantage, as:

A
(1)
t = rt + γVt+1 − Vt (2.27)

With an unbiased value estimator, the expected value of this expression is the same as Equa-

tion 2.26. At the same time, the variance can be significantly lower due to the lack of direct

dependence on future rewards. With a biased value estimate, this becomes an example of the

classic bias-variance trade-off, prevalent in Machine Learning.

Notice that intermediate n-step advantages can be defined by simply delaying the bootstrap-

ping:

A
(2)
t = rt + γrt+1 + γ2Vt+2 − Vt (2.28)

A
(n)
t =

n−1∑
i=0

[
γirt+i

]
+ γnVt+n − Vt (2.29)

which introduces a wide range of possible advantage estimation methods. What GAE proposes is

using all n-step advantage estimates, weighted exponentially with a factor of λ ∈ [0, 1]:

AGAE
t = (1 − λ)(A1

t + λA2
t + λ2A3

t + . . .) (2.30)

This turns out to have a simple analytic expression that can be computed with a single pass

algorithm. Empirically, GAE often noticeably improves the performance of RL algorithms, and is

the de facto standard for advantage estimation in Actor-Critic algorithms.

2.4.8 DDPG

An algorithm on the boundary between Value-based and Policy-based methods is the Deep De-

terministic Policy Gradient (DDPG) [99]. It is based on the notion of a Deterministic Policy

Gradient [148], which is the gradient of a state-action value function with respect to the action. It

can also be seen as an adaptation of the DQN algorithm to continuous action spaces.

In DDPG, we train two separate networks – a state-action value network Qϕ : S ×A → R, and

a (deterministic) policy network πθ : S → A. The value network is trained in a way similar to

DQN, with some tricks such as using a replay buffer and a target network to stabilize the training.

The key difference lies in the max operator of Equation 2.19, which is not trivial with a continuous

action space. This is where we use the second, policy network, trained to predict the optimal

action according to the reward function. The Q network is optimized to minimize the following

loss functions:

L(ϕ) = E
[
(Qϕ(s, a) − y(r, s′, d))

2
]

(2.31)

y(r, s′, d) =
(
r + γ(1 − d) max

a′
Qϕ(s′, a′)

)
(2.32)

where (s, a, r, s′, d) are the transitions in the replay buffer, with s, s′ being the current and next

32

state, a the action that was taken, r the reward, and d is equal to 1 if the state was terminal,

and 0 otherwise. Then, the policy is optimized using gradient ascent to maximize the following

objective:

L(θ) = E [Qϕ(s, µθ(s))] (2.33)

This can then be differentiated using the chain rule, giving the policy gradient of:

∇θL(θ) = (∇aQϕ(s, a)) · (∇θµθ(s)) (2.34)

Overall, DDPG can be seen as the simplest way of adapting DQN to continuous action spaces,

without having to discretize the action space. Because it is off-policy, it can be more sample-

efficient than competing on-policy algorithms, making it suitable for environments in which it is

difficult to collect large amounts of data. However, its asymptotic performance is often worse

than that of competing on-policy algorithms like PPO, which leads to its limited practical use in

character animation.

2.4.9 TD3

Twin Delayed DDPG (TD3) [38] is to DDPG what Rainbow is to DQN – it introduces a series

of tricks that significantly improve the algorithm’s performance. The main changes are as follows:

1. Clipped Double Q-Learning

2. Delayed Policy Updates

3. Target Policy Smoothing

Clipped Double Q-Learning works similarly to Double Q-Learning described in Rainbow

(Section 2.4.2, using the smaller value of the two networks’ outputs to prevent value overestimation.

Delayed Policy Updates involves performing policy updates less frequently than Q function

updates. Finally, with Target Policy Smoothing, noise is added to the target action, so that it

is more difficult for the policy network to exploit errors in the Q function.

2.4.10 SAC

Soft Actor-Critic (SAC) [47] is in many ways similar to TD3, in that it is a modification of

DDPG with certain changes introduced in order to improve its performance. Primarily, it uses

entropy regularization by adding a term proportional to the policy’s entropy to its optimization

objective. This encourages the policy to remain stochastic, increasing exploration. Similarly to

TD3, it uses Clipped Double Q-Learning, minimizing the Bellman loss of DDPG. However, there is

no explicit policy smoothing, as SAC trains a stochastic policy instead of a deterministic one. As

a result, the additional regularization is unnecessary, since actions are sampled from a nontrivial

distribution.

Specifically, SAC learns three functions in parallel: the policy πθ, and two Q functions Qϕ1
,

Qϕ2
, with the usual double Q-learning approach. Since they are trained on an entropy-regularized

objective, the Q function optimization objective takes the following form:

L(ϕ) = E
[
(Qϕi

(s, a) − y(r, s′, d))
2
]

(2.35)

33

y(r, s′, d) = r + γ(1 − d)

(
min
j=1,2

Qϕj
(s′, ã′) − α log πθ(ã′|s′)

)
(2.36)

where ã′ ∼ πθ(s′), and α > 0 is the entropy regularization coefficient. Notice the similarity to

Equations 2.31 and 2.32 of DDPG, with the key difference being that the objective now has a

term proportional to the entropy of the action distribution α log πθ(ã′|s′), and the action used for

computing the Q value of the following step is taken directly from the behavior policy.

When it comes to policy learning, as SAC learns a stochastic policy, it must output a distribution

over the action space. The optimization takes the following form:

L(θ) = E
[

min
j=1,2

Qϕj
(s, ã′) − α log πθ(ã′|s)

]
(2.37)

where ã′ ∼ πθ(s′). Notice again the similarity to Equation 2.33, which confirms that SAC is, in its

essence, an updated and improved version of DDPG.

It is important to keep in mind that while this is a general outline of the algorithm, there

are many details that can significantly affect its performance. For more information on this, we

refer the reader to the original paper, as well as the existing open-source implementations (Section

2.9.3).

2.4.11 Learning from Data

As a general rule, Reinforcement Learning does not need expert data to train agents, instead using

an environment that the agent can interact with. In some cases, however, it may be beneficial

to use expert data to augment the learning process, or even eliminate the use of a simulation

whatsoever. This is often referred to as Imitation Learning, because the agent learns to imitate

the actions of an expert whose experience is shown to it.

Behavior Cloning (BC) [12, 139, 32] is the simplest way to perform Imitation Learning. Its

core idea is to treat Imitation Learning as a supervised learning problem, which given a dataset

consisting of observations and actions, learns to map the former to the latter by training a classifier

or a regressor.

By including a model training phase in which the agent can interact with the environment, we

can remove the requirement that the dataset contains the actions [168]. This significantly simplifies

the data required to perform imitation learning, and enables learning by simply observing someone,

much like humans do in the real world. However, the quality of the resulting behaviors is typically

lower due to the fact that the dynamics model is only trained with on-policy data, which means

that out-of-distribution errors are likely to occur. For this reason, if the data about actions is

available, it is better to use it instead of relying only on observations.

The Generative Adversarial Imitation Learning (GAIL) [60] algorithm represents the

main alternative to Behavior Cloning. It relies on the concept of Inverse Reinforcement Learn-

ing (IRL) [196], which means learning the reward function from demonstrations (as opposed to

regular RL, where the agent learns a policy, or generates demonstrations, given the reward func-

tion). This, combined with the notion of adversarial learning known from Generative Adversar-

ial Networks (GAN) [41], and a PG-based update rule (originally TRPO) produces an efficient

algorithm for Imitation Learning.

A common practice is using Imitation Learning methods in conjunction with standard, reward-

based RL algorithms [39]. This can be done by including a term derived from Imitation Learning

34

either in the reward function, indirectly encouraging the agent to act similarly to the data, or by

including it directly in the optimization objective.

2.4.12 Summary

We described the most noteworthy RL algorithms used in single-agent environments. From a

practical point of view, we recommend either using the on-policy PPO with GAE for advantage

estimation, or the off-policy SAC, which are the most popular algorithms of their respective

categories. If the training data is difficult to obtain, SAC is typically better as it can reuse the

data enabling higher sample efficiency. On the other hand, PPO often offers faster training in terms

of the wall time by using parallelism in data collection and larger performance improvements per

gradient update. If working with discrete actions, Rainbow or another version of DQN is also a

viable choice. Finally, if one wants to incorporate real data in the training process, both BC and

GAIL are strong options and can be integrated with other algorithms.

2.5 Multiagent RL Algorithms

Here, we describe the algorithms that are adapted specifically for multiagent environments. Those

are typically based on existing single-agent algorithms, with modifications that improve the training

process by abusing the specific multiagent structure of the problem.

2.5.1 Independent Learning

Any single-agent algorithm can be used in a multiagent scenario by using Independent Learning,

with the resulting algorithms typically called IPPO, IDDPG etc. This entails treating the other

agents as parts of the environment, possibly including information about them in the observation,

and then simply training as if it were a single-agent task. A simple way to accelerate this training

process when all agents are identical is treating them as homogeneous, also called Parameter

Sharing [163]. With this approach, every agent receives their own observation and takes their own

action, but they share the underlying neural network, and their experience can be combined for

the training. Otherwise, if each agent has its own separately trained neural network, it is referred

to as heterogeneous. It is possible to introduce some degree of heterogeneity by including an

agent indicator in the agent’s observations, as shown by Gupta et al. [44].

2.5.2 MADDPG

MultiAgent DDPG (MADDPG) [107] is an extension of the DDPG algorithm to explicitly

use the structure of multiagent environments in the training procedure. It relies on the idea of

Centralized Training, Decentralized Execution (CDTE), which means that the algorithm

can use global or hidden information, as long as the resulting agent only needs access to its own

observations.

In multiagent environments, there are two main pieces of information that is not available during

execution – other agents’ observations (or the global state), and the actions they take. However,

when training in a simulation that we have total control over, these quantities are readily available,

and so can be used in an Actor-Critic paradigm to optimize the Critic. Then, in the execution

phase, only the agent’s local observation is necessary for the Actor network to choose the action.

35

2.5.3 MAPPO

MultiAgent PPO (MAPPO) [189] is the result of extending the PPO algorithm analogously

to the difference between DDPG and MADDPG. Because PPO is an Actor-Critic algorithm, the

Critic similarly use centralized information such as other agents’ observations and actions, while

only the Actor is actually involved in the decision making during evaluation.

Since the concept and the name of MAPPO is generic, there are other works that introduce

a similar extension [43, 101, 64]. The details are different between those papers, but in the most

robustly evaluated version of it uses the following five tricks:

1. Value normalization through a running mean, for robustness with respect to the reward scale

2. Value function input includes both global and agent-specific features, pruned to reduce the

input dimensionality

3. Data is not split into minibatches, and the algorithm uses relatively few training epochs

4. The clipping factor is tuned as a trade-off between training stability and fast convergence

5. Using death masking (inputs for dead or deactivated agents) through zero states with agent

ID

The resulting algorithm delivers results comparable with more sophisticated off-policy algo-

rithms, while being viable to train using a single machine with one GPU.

2.5.4 QMIX

QMIX [136] and its derivatives are a family of algorithms that adapt Q-learning in cooperative

scenarios, so that it can use centralized training, while maintaining the option to perform decen-

tralized execution. The core idea is that the joint state-action value is a monotonic function of the

state-action values of each individual agent.

Consider the two extremes in terms of centralizing Q value estimation. On one hand, we have

fully independent Q learning, where each agent optimizes their own reward, which can be a viable

option as described in Section 2.5.1. On the other hand, we can also consider fully centralized

Q learning, with a single network processing all agents’ observations, and outputting their joint

action. A simple middle ground can be found in Value Decomposition Networks (VDN) [157],

where a joint Q function is expressed as a simple sum of the agent’s individual Q functions:

Qtot(s, a) =
∑
i

Qi(s
i, ai) (2.38)

QMIX introduces additional flexibility to this approach. It replaces the summation operator

with an arbitrary function of the individual values, with the only restriction being that it is

monotonic with respect to all its inputs:

∂Qtot

∂Qi
≥ 0,∀i ∈ I (2.39)

This is obtained by using a mixing network to represent Qtot. The weights of the mixing

network are the outputs of a set of hypernetwork [46] conditioned on the environment state. This

whole setup can be trained with significant information sharing between the cooperating agents,

while in the execution phase, each agent only requires its own Q function Qi.

36

Due to the popularity and effectiveness of QMIX, researchers have developed various mod-

ifications aimed at improving its performance even further [195, 173, 187, 137, 153]. However,

recent work suggests that using regular QMIX with appropriate implementation details is enough

to achieve results comparable or even superior to the more complicated algorithms [62].

2.5.5 Summary

When working with multiagent problems (e.g. crowd simulation), we typically recommend using

one of the single-agent algorithms and applying it with an Independent Learning approach as

a starting point, with either IPPO or ISAC following the notation from Section 2.5.1, as well as

Parameter Sharing. This is significantly simpler in implementation than using algorithms that

introduce centralized communication, and can often yield competitive results. While adding some

additional communication or centralization may be beneficial, MADDPG tends to be difficult to

train in new environments.

2.6 Skeletal Animation

Individual characters can be animated using kinematic or physics-based methods. For the former

case, the action space directly consists of kinematic poses or existing motion clips, and are defined

based on motion capture data. In contrast, physics-based methods have action spaces that directly

or indirectly produce joint torques that drive the motion. In this section, we first provide an

abridged overview of RL as applied to kinematic methods. We then shift our focus to physics-

based methods. This begins with a general summary of the many nuances involved when using

RL to control physics-based character movement, given that the default motions produced by RL

algorithms for humanoid characters in the RL literature are usually of low quality as compared to

what is needed for computer animation applications. We then categorize and review many of the

recent methods and results for RL-based physics-driven character animation.

2.6.1 RL for Kinematic Motion Synthesis

RL has a long-standing history of being used to learn kinematic controllers from motion cap-

ture data. Here we provide a brief overview of work in this direction. Motion generation can be

framed as an RL problem where actions correspond to the choice of motion clips, as first applied

to automatically-constructed graphs [11, 80, 91] and then in ways that were better tailored to

locomotion tasks, e.g., [90, 170]. Lee et al. [96] later introduced the concept of continuous mo-

tion fields in support of a data-driven state-dynamics model. Optimal actions on this model are

then learned via a table-based representations for the policy and value function. Modern motion

matching methods can be seen as a short-horizon version of motion-fields. Ling et al. [100] learn

a latent action space using autoregressive variational autoencoders to define character controllers

and thereby enabling optimal goal-based animations.

2.6.2 The Many Challenges Beyond the Choice of Algorithm

A considerable amount of thought is typically required to define a character movement task, ar-

ticularly in a physics-based setting. This begins with the design of the character, which involves

making decisions related to joint torque limits, contact friction, mass distribution, joint limits,

37

joint damping, simulation and control time steps, and more. The choice of action space can also

have implications for the learned results. Available options include joint torques, joint PD-target

angles, joint PD-target angle offsets from an available reference motion, muscle-based activations,

or more abstract actions for hierarchical control approaches. It is also sometimes possible to learn

simplified actions spaces that avoid redundancies or that sample from a reduced-dimensionality

action manifold, which can possibly be learned as well. The definition of the state of a character

that is provided to the policy can also have a significant impact. The pose can be represented as

Cartesian joint locations, or in a more traditional form consisting of a root position and orientation,

followed by a set of internal joint angles. Contact information can also be an important part of

the state.

Next, the task rewards need to be designed, which may need to balance generic and possibly

temporally-sparse rewards related to the goals, rewards that encourage energy-efficient behavior,

and shaping rewards that help guide the solution in what can otherwise be an exceedingly-large

search space. Rewards also tend to work better when mapped to a fixed range, as commonly done

using a negative exponential. Episode termination criteria are also important, as they effectively

constrain the search space and, by virtue of providing no further rewards, also provide an implicit

negative task reward. Reward terms can be combined, using a weighted addition, e.g., [125] or in a

multiplicative fashion, e.g., [120], and these choices can strongly impact the final learned policies.

The optimization criteria to define a natural human or animal motion are difficult to determine,

and thus a natural alternative is to instead seek to imitate motion capture data, either as individual

motion sequences, or as distributions using adversarial approaches. The choice of initial states for

a task is important, as it can affect the task difficulty [138], and can also simplify the learning, as in

the case of a motion imitation task where the initial states can be drawn from the given reference

trajectory [126]. Curriculum-driven learning can enable an easy-to-difficult learning order for a

task [184]. Policies can be ”warm-started” from existing solutions. Prior knowledge should be

used where possible to set the relevant variances and exploration rewards. External forces can also

be allowed early on in the optimization [190], and then slowly withdrawn. Hierarchical learning

can also be leveraged, by first learning low-level control that operates at a fine time scale, followed

by higher-level control that allows for long-horizon tasks [125].

The algorithms themselves are challenging to work with, with a typical improve-and-test de-

bugging iteration requiring between hours and days, depending on the task difficulty and the

availability of compute. In many cases, wall-clock time is a more important consideration than

sample-complexity, and algorithms whose common implementations support a high-degree of par-

allelization, e.g., PPO, are then sometimes preferred over that are more difficult to parallelize, e.g.,

SAC. Tuning the algorithm hyper-parameters plays an important role in the learning efficiency

and success, and may require grid search or other hyper-parameter optimizations. The results of

model-based trajectory optimization can be used to guide policies towards suitable solutions for

difficult tasks. Debugging RL tasks is also an important skill, and points to initially working with

simplified or more-constrained systems, visualizing reward terms, understanding the limitations of

physics engines, and much more. More specific algorithmic features to consider include the use of

a Huber loss instead of the conventional quadratic loss for Q-learning, considering various forms

of conservative Q-learning, choice of temporal-difference horizon, and more.

Many simulated robotic control environments are standard benchmarks for RL algorithms.

MuJoCo [166] and PyBullet [31], two of the most commonly used physics simulation engines in

RL, provide several robot models with a Gym [19] interface. These robots range from abstract

38

ones like Hopper or Reacher, through animal-like Ant and HalfCheetah, to more human-like ones

like Humanoid and Walker2d. While not realistic, they share many of the principles of skeletal

character animation.

We next review work that uses reinforcement learning to develop a variety of full-body motion

skills for physics-based characters. These leverage many of the insights described above.

2.6.3 RL for Individual Character Skills

For the remainder of this section, we further categorize methods into: (a) those which use motion

capture data, typically as a key part of the imitation objective, and (b) methods that use a more

general “pure” learning objective. In both cases, there exists a variety of prior art that is entirely

model-based or uses other optimization methods. However, for our purposes here, we restrict

ourselves to methods that use reinforcement learning for motion imitation.

Motion imitation RL methods

One of the first RL methods to be able to successfully imitate motion capture data, including

highly dynamic motions such as flips, uses data from a stochastic planning method, first developed

as an open-loop trajectory optimization method [104]. Building on this type of method, the work

of [105] proposed to use data from multiple runs of the stochastic trajectory optimizer to then learn

a state-conditioned feedback policy. The desired motion sequence is divided into a sequence of 0.1 s

duration control fragments, and for each such fragment computes a multivariate linear regression

of the actions with respect to the state. This yields a simple linear policy for actions as a function

of the state, for the duration of the control fragment. This model is then able to robustly imitate

walking, running, spin-kicks, and flips, as well as transitions. Further work has then shown how

learned control fragments can be treated as abstract actions, which can be resequenced using deep

Q-learning [102], and can further be adapted to learn basketball playing skills [103].

The use of policy gradient RL methods to imitate human motion capture clips was first explored

by Peng et al. [125] for a variety of walking gaits. This also introduced a hierarchical reinforcement

learning approach, with a low-level policy first being trained to reach target stepping locations

while also striving to imitate the reference motion. A high-level policy then operates once for every

walking step, generating step targets in support of tasks, including control of a ball with the feet,

navigating paths, and avoiding dynamic obstacles. Peng et al. [126] further develop the imitation

learning approach to train controller for a diverse set of motions, including highly-dynamic spin

kicks and flips for humanoids, sequencing such motions, and using the same imitation approach for

quadruped controllers. Imitation-based learning of a wider variety of quadruped gaits, including

sharp turns, is demonstrated in [128], along with successful transfer to quadruped robots. Peng et

al. [129] use ideas from adversarial imitation learning by combining a reward function to control the

high-level behaviors, with low-level controls specified with an unstructured dataset of motion clips.

This method can be used on both humanoid and non-humanoid models. It produces high-quality

animations that match tracking-based methods, but the training process can still be prone to mode

collapse, as is common in GAN-like algorithms. Some of these examples in Imitation Learning are

shown in Figure 2.3. The choice of action space is also shown to have an impact the speed and

quality of imitation-based learning [122].

Computer vision based pose tracking can also be used as a source of motions to imitate, allowing

robust control policies to be learned from video clips [127]. Isogawa et al. [69] construct an end-

39

to-end pipeline that converts Non-Line-Of-Sight measurements to 3D human pose estimation by

employing a diverse set of techniques, including an RL-based humanoid control policy. Yuan et

al. [192] introduce the SimPoE framework, which trains an RL agent to control a physics-based

character to estimate plausible human motion, while conditioning it on a monocular video.

The majority of the works described above develop control policies that only reproduce single

clips, or a specific set of motion clips. The motion to imitate plays a role via the reward, but

is not provided to the policy as an input. The policies are conditioned on a time or motion

phase. An important next step has been to reproduce a richer variety of motions by conditioning

the policy on a short time window of the future motion to imitate. This can also be seen as

a generalized form of learned inverse dynamics, with a longer anticipatory window as needed to

make motion corrections for more difficult motions. Chentanez et al. [24] first develop this type

of conditioning and apply it to large motion datasets. Significant further developments follow

from improvements that target scalability, motion transitions, motion quality, generalization, and

learning efficiency [120, 16, 174, 182]. These methods are further extended to work with muscle-

based actuations [94], a large diversity of body shapes [181], and producing large motion variations

even from a single motion clip [95]. Other work shows how to allow for more flexible forms

of imitation [109], and that leverage residual external forces to enable learning more challenging

motions [191]. Imitation-based controllers can also be used to learn a latent human-like action space

via distillation (“neural probabilistic motor primitives”), which can then be used as an abstract

action space for new tasks [112]. Similarly, Luo et al. [108] learn a natural action distributions

from reference motions for quadrupeds, while a GAN-based controller reproduces suitable actions

based on user-input. This is followed by high-level DRL fine-tuning.

Figure 2.3: Imitation-based Learning. Proposed methods as in [126] allow to successfully synthesize
animations from motion capture data. In other works, as in [129], they combine such techniques
with the possibility of adding low-level behaviours to control the production of high-complexity
animations.

Pure objective RL methods

Reinforcement learning has also been successfully used for full-body character animation without

an imitation objective. Here, the objective can be framed in terms of rewards that include energy,

40

progress towards a goal, stylistic hints, and regularization terms.

Model-predictive control (MPC) methods, which iteratively re-plan and then execute the first

action, have been successfully employed for humanoid animation and are a form of model-based

RL. The work of Tassa et al. [162] demonstrated the online use of iLQG (Iterative Linear Quadratic

Gaussian) trajectory optimization for online control of humanoid characters for a variety of tasks,

including getting up, using a 0.5 s planning time horizon. Sampling-based methods can also be

used to achieve trajectory optimization over a finite planning horizon, and have been explored

in detail by Hämäläinen et al. [48, 49]. Online trajectory optimization and policy learning can

also be used in a mutually supportive fashion [135], with the policy serving to accelerate the

trajectory optimization, and the trajectory optimization helping to bootstrap the policy learning.

In addition, trajectory optimization can benefit from more complex search spaces, for instance by

including contact points [115] to improve simultaneously both, trajectory and policy learning.

Actor-critic methods for RL can more easily tackle motion tasks, such as locomotion, by being

provided with task-specific action abstractions. For example, the action space can consist of a

discrete set of existing controllers, with a high-level actor-critic controller being trained to make a

discrete selection among the set of available controllers at each step of the gait. This setup is used

with a kNN-based value function approximator to achieve high-level objectives by Coros et al. [29].

An abstracted, tailored action space is used by Peng et al. [123] to include a continuous action space

as defined by a conveniently-parameterized finite-state machine controller. A kNN-based actor-

critic pair is then used to train dog-like and bipedal models to traverse variable terrain. Later, Peng

et al. [124] develop a mixture-of-experts based Actor-Critic algorithm named MACE for improved

performance on a similar dynamic locomotion task, this time using deep neural networks for the

actors and critics, and thereby eliminating some of the feature engineering required by the previous

approach.

Can policy-gradient RL algorithms be used with pure learning objectives to generate natural

human movement, as opposed to the unrealistic frenetic motions commonly seen resulting from

popular RL benchmarks? Yu et al. [190] encourage symmetric and low-energy motions by appro-

priately modifying the loss function of the algorithm, by adding the so called mirror-symmetry

Loss to the usual surrogate loss of PPO. This allows for high-quality motions without using any

imitation of motion examples. This is particularly important for non-humanoid characters for

which there is no motion data available. Example non-humanoid models that can be trained this

way are in Figure 2.4. Abdolhosseini et al. [1] further investigate multiple methods of incorporating

symmetry constraints for skeletal animation tasks, inspired by the observation that human and

animal gaits found in nature are typically symmetrical. They use the PPO algorithm with four

options of enforcing symmetry on the learned policy. They show that this can in fact be harmful

to the training process, but in the end can produce higher quality motions. Xie et al. [184] explore

a curriculum-based learning solution to train characters to walk and run over a wide range of

stepping stones, with varying step heights, lengths, yaw angles, and step pitches, in the absence of

an imitation objective. PPO is used in conjunction with a parameterized generator of individual

steps, and the learning curricula advance the step difficulty in several different ways. PPO is used

to train the physical legged model.

To further improve on the realism, more biomechanically accurate models can be considered.

The NeurIPS conference hosted three challenges using the osim-rl platform (see Section 2.9.2):

”Learning to Run” (2017), ”AI for Prosthetics” (2018) and ”Learn to Move - Walk Around”

(2019) [78], all of which dealt with different aspects of controlling a human body model. The lead-

41

ing solutions used learned models of the environment, and off-policy algorithms such as DDPG.

Jiang et al. [70] continue this research direction by using another human body model based on the

OpenSim [146] platform. With muscles outnumbering joints, the larger action space of biomechan-

ical models can be significantly more expensive to train. This paper addresses this by allowing the

optimization to nevertheless operate in joint actuation space, as afforded by two neural networks

that model the state-dependent torque limits and the metabolic energy. The overall approach is

agnostic to the choice of RL algorithm.

Non-locomotion tasks are also important for full-body character animation. Kumar et al. [81]

use an algorithm based on MACE for the task of teaching a virtual humanoid model to safely fall

by minimizing the maximal impulse experienced by its body. They train a mixture of actor-critic

networks associated with all possible contacting body parts, and further use a form of hierarchical

reinforcement learning, with an abstract policy deciding the high-level behavior, and a joint policy

responsible for actually executing the action. Clegg et al. [28] consider the problem of simulating

the movement of a human dressing themselves using a combination of physics simulation and RL.

They use a virtual human-like model and is tasked with putting on one of three different pieces of

clothing. The process of getting dressed is divided into several subtasks, each of which is treated

as a Reinforcement Learning problem with an appropriate reward function. Subtasks are trained

using TRPO, and then sequenced together to produce a full motion. Yin et al. [188] explore the

problem of learning diverse jumping motions, including high jumps. For a given takeoff state, a

curriculum is used to learn a policy for increasing bar heights. The space of takeoff states is then

explored using Bayesian diversity search, to synthesize a diverse set of jumping styles, including

jump well-known techniques such as the Fosbury flop.

Figure 2.4: There is a wide variety of methods that also address the synthesis of animations
for quadrupedal or arbitrary morphology [108] [126] [190]. While the limited amount of motion
capture data introduces an additional challenge, such methods try to overcome this constraint by
covering a wide range of techniques, from imitation-based approaches to pure objective RL.

42

2.7 Crowd Animation

In this section we discuss the specific work that used RL algorithms in Crowd Animation scenarios,

as well as the challenges that make this task distinct from single-agent cases. Unlike Skeletal

Animation, Crowd Animation typically uses multiagent algorithms so that each individual agent

has access to its own information, but not necessarily to the global state. While the task can

often be seen as fully cooperative (e.g. making a realistic simulation), this enables more realistic

behaviors, and not using a centralized controller enables easier scaling to different numbers of

agents. We focus on applications pertaining to the challenge of multiple agents navigating in a

shared environment, and omit the discussion of more advanced topics around coordination and

division of tasks, considering them to be out of scope of this work.

2.7.1 Challenges of Crowds

The key factor distinguishing cooperative multiagent learning from single agent RL is the phe-

nomenon of nonstationarity. Typically, RL algorithms assume that the environment is stationary,

which means that the environment dynamics (represented by the transition function) remain the

same throughout the training. That is not true in multiagent training as observed by a single agent

– as other agents learn, their policies change, which affects the perceived environment dynamics.

In the case of Crowd Simulation specifically, there is also the question on how exactly to

represent the physics of the problem. While some works use holonomic cartesian controls in which

each agent can move in any direction, this is not entirely realistic, and instead, polar controls

may be used, where an agent decides its linear motion and turning left or right. Furthermore, the

agents may either control their velocities directly, or apply accelerations to their motion. While

these approaches can be seen as nearly equivalent, it is still necessary to choose one, which may

impact the final performance in nontrivial ways.

In certain cases, competitive and general-sum scenarios may be relevant, which carries addi-

tional complications. Most notably, evaluation of trained systems is challenging in the absence

of an expert model or an external performance measure. This is because the typical training

paradigm relies on self-play, and a winrate against a copy of itself cannot be reliably translated

to objective performance. Furthermore, the details of the self-play procedure can also impact the

training. Finally, as training progresses, agents might learn to specialize to play against specific

strategies, forgetting about their older versions, and underperforming when matched up against

them.

Finally, it is worth mentioning that many of the challenges in Skeletal Animation, still apply

here. Depending on the physical model of the agent behaviors and interactions, the exact choice of

the actuator may be important for the learned policies. Similarly, designing the reward function is

crucial for good performance – a reward that is too sparse may be prohibitively difficult, whereas

one that is adapted to be more dense, may lead to unexpected behaviors. Finally, it is often

desirable to have agents exhibit human-like behavior, but this task in itself is not well-defined, and

it may be helpful to use real-world data in order to generate a specific reward function.

2.7.2 Applications

Long et al. [106] apply an RL-based approach to the task of collision avoidance. While this is

not exactly the same thing as character crowd animation, collision avoidance is nevertheless a

43

significant component of crowd simulation systems. They train a policy which receives as input a

depth map, the goal’s relative position and the current velocity, on the task of reaching the goal

and avoiding collisions with other agents in the shared environment. Because they also deploy

them on real robots, there is additional emphasis on avoiding collisions, with contact between two

agents leading to removing both of them from operation with a large negative reward. They train

the policy using the PPO algorithm, and show that this method results in higher success rates

and more efficient policies compared to ORCA. With a similar approach, Lee et al. [93] apply

the DDPG algorithm to the task of basic crowd simulation – a number of agents in a shared

environment move through it, and attempt to reach their respective destination. They use polar

dynamics, with the RL agent setting a linear velocity and a rotation at each timestep. The agents

receive a positive reward for getting closer to their goals, a negative reward when they collide, and

there is also a regularizing reward term that encourages smooth movement. They show that this

setup is sufficient to obtain agents that reach their goals and avoid collisions, although the results

are still imperfect. There is also no regard for human-like behavior.

To explicitly combine ORCA with RL methods on the same standard crowd simulation task,

Xu et al. [185] introduce the ORCA-DRL algorithm. They use PPO to predict a preferred velocity

at any given step, which is then used as an input to ORCA. This is then responsible for actually

avoiding collisions. They show that this approach leads to successful collision avoidance, which

is not surprising given its reliance on a classical collision avoidance algorithm. It also does not

consider whether the behavior is human-like. Sun et al. [156] use a different approach – they

train four ”leader” agents responsible for guiding parts of the crowd, while the remaining agents

follow their respective leaders. They use PPO with a recurrent LSTM [61] policy and combine it

with a classical collision avoidance algorithm RVO. They train the agents to act in an unknown

environment with dynamic obstacles. The resulting behaviors manage to achieve their goals, but

do not take into consideration whether the behavior is human-like. This method also still relies on

classical collision avoidance algorithms.

Haworth et al. [52] introduces a method on the borderline between single character and crowd

animation. By employing a method based on the ideas of Hierarchical Reinforcement Learning,

they train two policies interacting with one another. The high-level policy is responsible for naviga-

tion and reaching global goals. It sets objectives for the low-level policy which directly controls the

joints of a humanoid model. They use this on multiple characters in a shared environment, with

the low-level policies shared between them. Both policies are trained using PPO, with the low-level

policy learning to match motions from a database of stepping actions using a PD controller.

Hüttenrauch et al. [68] introduce a method that, while not directly applied in crowd simulation,

is nevertheless very relevant. Their work focuses on swarm systems, which are inherently similar

to crowd scenarios – they both focus on a large number of agents acting in a shared environment,

often with a shared goal, with the individual agents typically being indistinguishable. They intro-

duce a method called Mean Feature Embedding, similar to existing Relation Networks [141, 194].

This approach uses a modified neural network architecture that ensures permutational invariabil-

ity between identities of different neighboring agents that are perceived by another agent. This

inductive bias can accelerate the training process, and improves scaling to different numbers of

agents in the environment. Alonso et al. [7] explore the applicability of RL methods for the task of

crowd navigation in AAA games. They use a large and complex 3D environment built on Unity,

modelled after real games that typically use a Navigaton Mesh (NavMesh) [151] approach. They

use a recurrent LSTM network to give their agents memory, and use the SAC algorithm for policy

44

optimization. As inputs, the agents receive their absolute positions, relative goal position, their

speed and acceleration, as well as 3D occupancy maps obtained via box casts, and depth maps

from ray casts. They show that this approach has a high level of success, and can enable more

flexible map designs, without requiring the designers to specify each possible link.

Zou et al. [197] consider the problem of understanding and predicting crowd behavior specifi-

cally from the perspective of Imitation Learning. They introduce a new framework named Social-

Aware Generative Adversarial Imitation Learning (SA-GAIL) which is trained to replicate behavior

recorded in demonstrations, while disentangling the different factors of decision-making in pedes-

trian movement. This allows them to obtain a human-understandable interpretation for the model’s

predictions, as well as for the real data. They use the TRPO algorithm for policy optimization and

show that this approach can produce high-quality, interpretable behaviors. A different approach

for using data to obtain more human-like behaviors is used by Xu and Karamouzas [186]. They

use the concept of Knowledge Distillation introduced earlier by Hinton et al. [59]. Along with the

standard PPO algorithm for policy optimization, they train a neural network in a simple super-

vised way, mapping observations to actions based on data from a crowd motion dataset. Then, the

outputs of this network are used as an additional source of reward for the policy learning, encour-

aging the agent to act similarly to what the supervised network predicts. This way, they obtained

more human-like behaviors on typical crowd simulation scenarios, as compared to a regular RL

baseline, without a detriment to their performance.

We summarize the algorithms from the papers listed in Sections 2.6 and 2.7 in Table 2.2. While

there is a decent diversity of physics engines, as well as a split between TensorFlow in PyTorch for

the neural network optimization, the RL algorithm of choice is predominantly PPO.

2.8 Human Interaction

While not directly a part of Character Animation, interaction between humans and learning-based

agents are highly relevant to its applications, notably for Virtual Reality games. For this reason,

in this section we describe some of the work towards interactive RL agents. For agents to be

interactive, it means that they must be capable of acting in a shared environment with a human-

controlled agent, in such a way that they retain their performance on their original goals, while

simultaneously reacting to the human’s actions appropriately. This is far from trivial, especially

when the human behavior significantly differs from the behavior of the trained agents.

An important concept to discuss is the Theory of Mind (ToM) [131]. Stemming from

developmental psychology, ToM refers to the ability that humans and some other animals possess,

of reasoning about the internal state of someone else – their goals and beliefs. As Rabinowitz et

al. [132] show, it is also possible to train RL agents so that they can learn ToM of other agents in

their environment by observing their actions.

Chodhury et al. [26] consider whether it is worthwhile for an agent to learn a full environment

model, to learn a ToM model of the human, as opposed to using a model-free approach, in order

to cooperate with a human agent. They use an autonomous driving task and show that general

black-box model-based methods can work as well as ToM learning, and both of them outperformed

the model-free approach.

Carroll et al. [22] analyze this problem in the general case of cooperative multiagent reinforce-

ment learning, using an environment based on the game Overcook, which requires a high level of

cooperation. They find that agents trained in the usual ways, such as with self-play or population-

45

based training, perform significantly when paired with a human played, as compared to their

original group performance. They introduce a method based on training a Behavior Cloning agent

on data collected from human gameplay. The policy of this agent is then frozen, and it is used as

part of the environment dynamics for the actual agent we want to train. Despite the BC agent’s

low quality, this turns out to be sufficient to improve the performance of the actual agent when

evaluated together with a human player.

Christiano et al. [27] include humans in the loop in the training phase, as opposed to enabling

cooperation with them. They introduce a method with which it is not necessary to specify a reward

function for an agent to optimize. Instead, the algorithm produces demonstrations which are then

judged by the human, allowing it to assign reward values from which it learns. This way, RL

agents can learn complex behaviors which are not trivial to define mathematically, instead relying

on human preferences, while only requiring human input on about 1% of the actual frames used

during training.

2.9 Frameworks

In this section, we discuss the most relevant libraries and frameworks used for training RL agents,

which are then applied to character animation. Because the field of Reinforcement Learning re-

lies on neural networks, we begin by describing main frameworks used in Deep Learning. Those

are responsible for efficiently performing algebraic operations on tensors (here understood as n-

dimensional arrays), using parallelism when possible. They also take care of computing the gradi-

ents of functions with the backpropagation algorithm, enabling gradient-based optimization. They

do that either on CPU or GPU, sometimes also supporting TPU (Tensor Processing Unit). Then

we move on to libraries that function as backbones for RL tasks, by providing standard implemen-

tations, offering a common API, or even enabling development of new environments. Finally, we

describe the tools used specifically for Reinforcement Learning, either by providing full algorithms,

components of them, or other auxiliary functionalities.

All the listed frameworks are written for the Python programming language, although they

frequently use other languages for efficient computation that the end user does not need to know.

This is the de facto standard in Machine Learning and Reinforcement Learning specifically. Despite

its relatively slow performance, through the use of the aforementioned libraries, all the heavy

computation is off-loaded to a more efficient language that the end used does not need to use

directly.

2.9.1 Neural Networks

While many open-source tensor computation libraries exist today, three in particular stand out.

The first is TensorFlow (TF) [111] developed by Google – originally released in 2015, it underwent

major changes in 2019 when the version 2.0 was released with a new philosophy. For this reason,

TF1 and TF2 are mutually incompatible and can be seen as two distinct frameworks. The main

difference between them is the default handling of computation graphs. In TF1, we have to

explicitly define a graph, and then run it within a session. This means that any intermediate values

are hidden from the user, leading to a difficult debugging process. On the other hand, TF2 uses

eager evaluation, building an implicit computation graph. This way, the developer can access the

values of any tensors at any time, also in interactive mode e.g. in a Jupyter Notebook [79], without

46

Figure 2.5: The relative popularity of PyTorch (red) and TensorFlow (blue) in terms of search
volume on Google according to Google Trends, worldwide, between 01/01/2016 and 27/07/2021.

needing to modify the computation graph for this purpose. TensorFlow can run computations on

CPU, GPU (via CUDA and ROCm), and TPU.

It is important to mention Keras [25], originally developed as an independent library, is now

integrated as part of TF2. It exposes a higher-level API that allows faster development at the cost

of fine-tuned control over the computation graph – this, however, can be regained by including

lower-level TF2 code as custom layers. While it is primarily designed for Supervised Learning, it is

possible to use it with Reinforcement Learning, particularly when using only some of its features

in conjunction with TF2 code.

PyTorch [121], developed by Facebook, was released in 2016 as a Python version of the existing

library Torch, which used the Lua language. Its design is very similar to NumPy [51] and inspired

TF2 in that it uses eagerly-executed tensors that can be used in dynamic computation graphs.

PyTorch can run computation on CPU and GPU (via CUDA), and with some extra effort, TPU.

Its simplicity of use, combined with performance that matches TensorFlow, led to its widespread

usage, particularly in research context [53].

A relatively new framework that is worth mentioning is Jax [18]. It offers simple acceleration

and parallelization of code with a simple interface that can nearly be used as a drop-in replacement

for NumPy. It is heavily inspired by the functional programming paradigm, focuses on composable

transformations of functions, notably including differentiating arbitrary functions. By itself, Jax

contains efficient numerical operations on tensors, and does not explicitly include neural networks.

However, libraries in its ecosystem fill that gap, notably Flax [54] and Haiku [56].

In the words of Andrej Karpathy, ”I’ve been using PyTorch a few months now and I’ve never

felt better. I have more energy. My skin is clearer. My eye sight has improved.” [76] This sentiment

is also visible in the data. According to the 2020 Stack Overflow Developer Survey [154], while

TensorFlow is more commonly used than PyTorch (11.5% vs 4.6%), it has a lower Loved score

(65.2% vs 70.5%), and higher Dreaded score (34.8% vs 29.5%). According to Google Trends,

despite its later release date, PyTorch matches the popularity of TensorFlow is terms of search

volume, as we show on Figure 2.5. Overall, the common perception is that TensorFlow is more

suited for deployment and industry applications, while PyTorch can be more effective for research

and development.

2.9.2 Environments

The main framework underlying nearly all modern RL research is Gym [19], recently succeeded by

Gymnasium [169]. It contains a set of commonly used environments that serve as benchmarks for

RL algorithms, together with a unified Environment API and a way to implement new environments

47

Figure 2.6: A visualization of different legged models of varying complexity. The agents’ objective
is moving each of the joints so that the overall center of mass moves forward or is balanced, while
minimizing the energy expenditure. From left to right: Hopper, Walker2d, Humanoid (MuJoCo)
and Humanoid (PyBullet).

as Python classes. This way, a single implementation of the environment can be used with multiple

algorithms for easier comparison and benchmarking.

The main parts of the Gym API are the following methods:

• reset() → observation

• step(action) → (observation, reward, done, info)

where the observation and action can be in any format agreed between the environment and the

agent. The observations are usually tensors, and actions are either vectors or discrete values,

but more complex, tree-like structures are also sometimes used. The reward is a single scalar

value, and done is a binary flag indicating whether an episode has ended. Finally, info is a

dictionary containing arbitrary additional information. Other properties like observation space

and action space exist to specify the structure of the information exchanged with the agent, but

the extent to which they are required depends on the specific algorithm implementation.

Canonically, Gym only supports partially observable single-agent scenarios, corresponding to

POMDPs. Supporting multiagent environments is possible to an extent without changing the

abstractions. Specifically, a DecPOMDP can be represented by taking the state and action spaces

to be the product spaces of all agents. The reward can then remain as a single scalar value, shared

between the agents, maintaining full compatibility with the Gym API.

The situation is more complicated when dealing with more general multiagent problems like

POSGs. In this case, each agent may receive its own reward independently of others, which

cannot be represented with a single scalar value. What is more, some agents might not be active

throughout the episode. For that reason, frameworks like RLlib [97] use a modified version of

a gym Environment where everything is based on Python dictionaries – observations, actions,

rewards and ‘done’ values (i.e. boolean episode termination flags) are Python dictionaries, where

each agent’s respective values are indexed by the name of that agent.

Other general multiagent formalisms also have their corresponding libraries. The Petting

Zoo [164] library implements the AEC formalism, and is well-suited for general multi-agent prob-

lems in which agents do not act simultaneously, but also supports simultaneous actions. Similarly

to Gym, it also contains a number of standard benchmark multiagent environments. The EFG

48

formalism is implemented in the OpenSpiel [88] library, which also contains several ready board

and card games.

MuJoCo [166], which stands for Multi-Joint dynamics with Contact, is a physics simulation

engine that is widely used in RL research. It can be used to design various robots whose control

is then learned with RL algorithms. Certain robots are included in Gym and serve as a common

benchmark for new algorithms, notably the Humanoid [162] which is relevant to the topic of char-

acter animation. It is worth noting that MuJoCo used to require a paid license to use, but has

now become open-source. PyBullet [31] and DART [92] are common open-source alternatives,

filling the same role as a physics simulation engine, and containing many of the same environments

ready to use. NVIDIA Isaac Gym [98] fulfills a similar role, enabling very fast parallel simula-

tions accelerated with GPUs. Different legged models from MuJoCo and PyBullet can be seen in

Figure 2.6.

ML-Agents [73] is a plugin to the Unity game engine which exposes an API through which

Python-based agents can interact with games developed in Unity. This can greatly accelerate the

development of new environments, as many features from game development are available out-of-

the-box, and are relevant for RL tasks. ML-Agents also contains implementations of PPO and SAC

algorithms in PyTorch, with the possibility to record and train with user-made demonstrations,

using BC or GAIL.

Osim [77], based on the OpenSim framework [146], was used in the 2017 NeurIPS ”Learning to

Run” challenge is a simulator with a physiologically accurate model of the human body. Its main

goal is bridging the gap between biomechanics, neuroscience and computer science communities

by providing a common ground for research. It contains a physics simulator, an RL environment,

as well as a competition platform to compare different solutions.

Alternatively to gradient-free physical engines, further implementations such as Nimble [178]

introduce novel ways of fast and complete differentiable rigid bodies simulations, which can be used

for hard optimization problems dealing with complex contact geometries or elastic collisions. Dif-

ferentiable physics [110] and the possible combination with stochastic gradient-free methods show

promising directions for research into more efficient physics engines for learning and optimization.

2.9.3 Algorithm implementations

In recent years, many frameworks with implementations of RL algorithms have appeared, many

of them including the same algorithms, but with differences in the tricks included, or in the

implementation philosophy. A common issue is that a framework is too rigid, and therefore it

is difficult to customize it for arbitrary research purposes. Here we describe the most relevant

frameworks, with a comparison of the algorithms they feature in Table 2.3

One of the earliest libraries with high-quality implementations of modern RL algorithms is

OpenAI Baselines [34]. Released in 2017, it contains the implementations of the most important

algorithms existing at the time, including DQN, DDPG and PPO, using TensorFlow. However,

at the time of writing it is in maintenance mode, which means that it is not updated with the

new developments in the field. Furthermore, the implementations are considered to not be very

readable and are challenging to modify or update.

For this reason, the Stable Baselines (SB2) [58] library was developed, with re-implementations

of the same algorithms with an addition of SAC and TD3, with a series of improvements to their

usability, including: better documentation, tests, using custom policies, and a shared interface

49

between all algorithms. A full comparison is included in the official GitHub repository. Stable

Baselines uses TensorFlow for its algorithms, but is now in maintenance mode. The more up-to-

date version is Stable Baselines 3 (SB3) [134] which has the same purpose as SB2, but uses

PyTorch instead, and is actively updated with new features. Both SB2 and SB3 have very limited

support for multiagent training.

RLlib [97] is built on Ray [116], a platform for parallel computing, and because of that it can

achieve high performance through efficiently parallelizing data collection. It has a large selection

of both single-agent and multiagent algorithms in both PyTorch and TensorFlow (depending on

the algorithm), with a wide variety of options to adjust for those algorithms. The implementations

are very efficient, but the code-base is complex, and therefore difficult to understand and modify

for most users.

CleanRL [65] is a library with a different design philosophy – all implementations are contained

entirely in a single file. This allows for simple customization, and can serve as a reference when

re-implementing those algorithms. CleanRL uses PyTorch for its algorithm implementations. It

also includes the Open RL Benchmark, which contains reproducible experiments that use the

implemented algorithms on a wide range of standard RL environments.

Dopamine [23] is a research framework developed by Google, with the design principles of easy

experimentation, flexible development, compactness and reliability, and reproducibility. It focuses

on variants of DQN, including Rainbow and several other modifications. The framework primarily

uses TensorFlow, but it also contains Jax implementations of the algorithms.

TF-Agents [42] is a part of the TensorFlow ecosystem dedicated to Bandits and Reinforcement

Learning algorithms. It contains high-quality implementations of modern RL algorithms written

in TF2. The implementations are modular and include tests, benchmarks and tutorials on how to

use the library.

Tianshou [177] maintained by researchers from Tsinghua University is a modular RL frame-

work based on PyTorch. While focusing on single-agent model-free algorithms, it also supports

multiagent environments, model-based algorithms and imitation learning. The implementations

are flexible so that it is possible to modify them for research purposes, and very efficient due to

parallelization.

Rlax [21], developed by Deepmind as part of the Jax ecosystem, takes a different approach

than all the aforementioned frameworks. Instead of full algorithms, it contains building blocks that

can then be used in implementing the algorithms. This includes exploration strategies, policies,

update strategies and more.

2.9.4 Summary

As we show, there are numerous libraries that can be used for creating environments and training

RL algorithms, and the best choice will necessarily depend on the application. Regarding envi-

ronment creation, highly specialized problems might require custom simulators, but for generic

character and crowd animation problems, we recommend using the Unity engine with ML-Agents

to build a gym or gym-like interface. For training, if customization of the algorithm is unnecessary,

we recommend using either RLlib or Stable Baselines 3 for single-agent (skeletal animation) sce-

narios. If some degree of customization is necessary, Stable Baselines 3 or Tianshou are worthwhile

options, with RLlib typically being too rigid. Finally, if it is necessary to introduce major changes

to the typical reinforcement learning loop, it might be necessary to use a custom-written algorithm

50

- components from Tianshou, CleanRL and Rlax can then prove to be helpful. Naturally, all of this

is conditioned on the availability of the desired algorithm in a specific framework (see Table 2.3).

2.10 Conclusions

Reinforcement Learning is a rapidly growing field of Artificial Intelligence and Machine Learning,

concerned with authoring intelligent behaviors by specifying their tasks, instead of describing the

specific behaviors. This method is of high utility for applications in Character Animation, both

for individual characters, as well as entire crowds.

In fact, many works already use RL algorithms to create more believable or higher-quality

animations. In many cases, with an appropriate simulator, it is sufficient to specify the desired

task in terms of a reward function (e.g. agents in a crowd heading towards a certain goal, while

avoiding collisions with one another), and then train one of the state-of-the-art algorithms to obtain

interesting behaviors. However, Deep Reinforcement Learning is still a relatively young field, and

thus its use is not common in the industry. This is likely to change in the upcoming years.

As for the implementation, there are many resources available to significantly accelerate the

development of new applications of RL. While different frameworks excel in different aspects, there

exist options for diverse use cases and degrees of complexity, so that in-depth expertise in the inner

workings of RL algorithms is not absolutely necessary to be able to apply them.

We anticipate significant progress on the intersection of Character Animation and Reinforce-

ment Learning in the upcoming years. The algorithms become more and more efficient, seeing

success after success in classic challenges like the games of Go and Starcraft. This, combined with

the widespread usage of GPUs, will make it possible to seamlessly integrate them into typical

Computer Graphics workflows.

51

Table 2.2: A summary of the DRL algorithms, simulation engines, and neural network frameworks
in the described papers, where applicable and stated in the paper or the provided source code. 1

Value Iteration, 2 Open Dynamics Engine, 3 Temporal Difference learning, 4 Maximum A Posteriori
Policy Optimization.

Citation Year Algorithm Physics Simulation engine NN Framework
[123] 2015 VI1 Box2D –
[124] 2016 MACE Bullet Caffe
[102] 2017 DQN ODE2 Theano
[125] 2017 TD3 – –
[122] 2017 TD – –
[81] 2017 MACE DART Caffe
[103] 2018 DDPG ODE Theano
[126] 2018 PPO Bullet TensorFlow
[127] 2018 PPO Bullet TensorFlow
[24] 2018 PPO MuJoCo TensorFlow
[190] 2018 PPO DART TensorFlow
[28] 2018 TRPO DART PyTorch
[106] 2018 IPPO Stage TensorFlow
[93] 2018 IDDPG – TensorFlow
[197] 2018 TRPO + GAIL – TensorFlow
[120] 2019 PPO DART TensorFlow
[16] 2019 PPO Bullet TensorFlow
[94] 2019 PPO DART PyTorch
[181] 2019 PPO DART TensorFlow
[1] 2019 PPO Bullet, MuJoCo PyTorch

[156] 2019 IPPO + RVO Unity3D –
[68] 2019 ITRPO – TensorFlow
[128] 2020 PPO Bullet TensorFlow
[174] 2020 PPO Flex -
[182] 2020 PPO Bullet TensorFlow
[191] 2020 PPO MuJoCo PyTorch
[112] 2020 V-MPO4 MuJoCo NumPy
[108] 2020 PPO Bullet TensorFlow
[100] 2020 PPO Bullet PyTorch
[69] 2020 PPO MuJoCo TensorFlow
[184] 2020 PPO Bullet PyTorch
[185] 2020 IPPO + ORCA – PyTorch
[52] 2020 IPPO, MADDPG Bullet Caffe
[7] 2020 SAC Unity3D –

[129] 2021 PPO + GAIL Bullet TensorFlow
[95] 2021 PPO DART TensorFlow
[109] 2021 PPO Bullet PyTorch
[192] 2021 PPO MuJoCo PyTorch
[188] 2021 PPO Bullet PyTorch
[186] 2021 IPPO - PyTorch

52

Table 2.3: A comparison of algorithm support between various frameworks. Legend: ✓ – algorithm
supported by the framework, × – algorithm not supported by the framework. Multiagent refers
to the capability of training in multiagent environments, with or without parameter sharing. Note
that this is not a complete list of algorithms implemented by each framework, as some of them
include many other, less relevant algorithms.

Algorithm
OpenAI
Baselines

Stable
Baselines

Stable
Baselines 3

RLLib Dopamine

DQN ✓ ✓ ✓ ✓ ✓
Rainbow × × × ✓ ✓
DDPG ✓ ✓ ✓ ✓ ×
TD3 × ✓ ✓ ✓ ×
SAC × ✓ ✓ ✓ ×

TRPO ✓ ✓ × × ×
PPO ✓ ✓ ✓ ✓ ×

QMIX × × × ✓ ×
BC/GAIL ✓ ✓ × ✓ ×
Multiagent × × × ✓ ×

Table 2.4: Continuation of Table 2.3.

Algorithm CleanRL TF-Agents Tianshou ML-Agents
DQN ✓ ✓ ✓ ×

Rainbow × × × ×
DDPG ✓ ✓ ✓ ×
TD3 ✓ ✓ ✓ ×
SAC ✓ ✓ ✓ ✓

TRPO × × ✓ ×
PPO ✓ ✓ ✓ ✓

QMIX × × × ×
BC/GAIL × × ✓ ✓
Multiagent × × ✓ ✓

53

54

Chapter 3

Reinforcement Learning for Crowd

Simulation

When setting up a crowd simulation, or in fact any RL task, it is important to properly de-

sign the underlying decision process. A typical abstraction used for RL is a Markov Decision

Process [14, 159, 160], although having multiple agents and a partially observable structure of the

crowd simulation scenario requires additional nuance. We must choose each element of this process

carefully, or else the choices will be made for us – by accident.

Throughout this thesis, we work in the paradigm of microscopic crowd simulation – that is, each

agent is simulated separately, with its individual observations, actions and objectives. However,

each of these three elements carries additional considerations that must be thought through in order

to have a solid foundation. This is exactly the topic of this chapter. How to design observations

and actions? Is there even a difference between various options? And if so, what are the best

choices?

3.1 Introduction

Simulating virtual human crowds is a common task when creating lively, populated scenes for

graphics applications. This includes a large variety of scenarios – ranging from small, artificially

structured scenes used in research, to large scale simulations with thousands of virtual agents.

They can be used either for real-life applications (e.g. testing evacuation scenarios in airports or

sport stadiums) or targeting automatic content creation in films and games, featuring a diversity

of background characters, each with their own goals and motivations.

While the approaches to simulating such crowds typically use hand-crafted or data-driven algo-

rithms, in recent years there has been an increasing research interest in using Deep Reinforcement

Learning (DRL) methods. These algorithms have a promise of a flexible, problem-agnostic training

process that can autonomously produce diverse behaviors. However, they also bring many new

challenges, which must be explored independently of the previous knowledge of crowd simulation

algorithms.

It is worth noting that just “crowd simulation” is somewhat of an underdefined problem. Al-

though we have an intuition as to what a crowd is and how it behaves, it is not clear how to

formalize it, which is exemplified by the variety of descriptions in prior work. At the same time,

55

as Reinforcement Learning (RL) is designed to optimize a given scalar reward function, it excels

when the objective is clearly stated. For this reason, we investigate the various ways to specify the

crowd simulation problem.

There are three main components of an RL system – observations, actions, and rewards. For

each of them, it is not necessarily obvious what is the appropriate level of abstraction, or even the

implementation, to properly simulate human crowds. Take actions, for example – it is infeasible

to perform a fully accurate biomechanical simulation of each muscle movement, so we must use a

simplified model. Similarly for observations, performing a full rendering of the scene to emulate

human vision would not only be expensive to perform, it would also difficult to train.

Designing the reward function is arguably even more complex. While navigating in our daily

life, we balance several, often mutually contradictory objectives, such as getting to the destination

efficiently, moving at a comfortable speed or avoiding bumping into others. Even though some

of them are simple to formalize as a single scalar reward, it is not obvious how they should be

balanced. Is it acceptable to reach the destination two seconds earlier, but increase the risk of

bumping into someone by 5%? Can we take a shorter path which leads through a group of people,

or should we go around, reducing risk of collision, but increasing the distance? The answer to each

of this question will vary from person to person, and many external factors. If going a bit slower

would cause us to barely miss a train, we are likely to accept a higher risk of colliding than if we

are just taking a walk around the park.

In this work, we intend to bring clarity to the intersection of crowd simulation and DRL, by

exploring in detail the impact of these design choices on the generated virtual crowds. We perform

a theoretical analysis of controlling the agents’ velocities, and an empirical investigation of various

observation and action spaces. We evaluate them in terms of optimizing the reward function, but

also consider the energy expenditure, and various quantitative properties of the movement. Our

contributions are:

1. Empirical evaluation of raycasting versus direct agent perception in RL crowd simulation

2. Empirical comparison of various implementations of observations and dynamics in RL crowd

simulation

3. Theoretical and empirical analysis of the properties of reward functions for efficient navigation

with RL

3.2 Environment Design Choices

We identify three design choices which can impact the properties of virtual crowds trained with a

standard DRL algorithm – observations, actions, and the reward function. In this section, we set

the problem in standard multiagent RL formalism, and describe the variants of observations and

action spaces explored in this work.

3.2.1 Problem Formulation

We model the problem of crowd simulation as a Partially Observable Stochastic Game (POSG) [50].

A POSG is defined as a tuple (I,S, {Ai}, {Ωi}, {Oi}, T, {Ri}, µ), where I is the set of agents, S is

a set of states of the environment, Ai is a set of actions for agent i (A = ×i∈IAi is the joint action

set), Ωi is the set of observations, Oi : S → Ωi is the observation function, Oi : S → Ωi is the

56

observation function, T : S ×A → ∆S is the environment transition function, Ri : S ×A×S → R
is the reward function, and µ ∈ ∆S is the initial state distribution.

In a POSG, all agents simultaneously make decisions based on their own private observations.

Then, the environment is updated according to the joint action of all agents, and each agent

receives its own reward that it tries to maximize. The reward is computed the same way for each

agent, but based on its individual situation (i.e. no reward sharing). We additionally specify a

time limit Tmax ∈ N which is the maximum number of steps the environment is allowed to take

before resetting.

3.2.2 Observation Space

In order to navigate through the environment, each agent must perceive its environment in some

way. However, it is not obvious in what form agents should receive this information, or in fact,

what the information should be.

The simplest human-inspired design is to give the agent information in its own frame of ref-

erence, and to have it perceive the environment through raycasting – a simple approximation of

human vision. The intention is that if humans can effectively navigate using this type of infor-

mation, then it should also suffice for virtual agents, which should then act more human-like.

However, it is not necessarily the case that an anthropomorphic structure is indeed optimal for

virtual agents, especially with it being only a rough approximation. More realistic rendering of the

agent’s vision is an option, but it would result in very large observation sizes, subject to the curse

of dimensionality. Thus, it is worthwhile to explore other possibilities.

An agent must receive information about its surroundings (other nearby agents and obstacles,

i.e. Environment Perception), but also about its own internal state and knowledge (e.g. its

current velocity, or its current destination, i.e. Proprioception). In both of these cases, it is

also relevant what is the reference frame in which they are observed. For the Environment

Perception, we consider two types of perception: Raycasting and Direct Agent Perception (AP)

(Section 3.2.2). For the reference frame, we have three representations: Absolute, Relative, and

Egocentric (Section 3.2.2).

Environment Perception

Raycasting refers to a method where several rays are cast from the center of the agent, in a plane

parallel to the ground. Each of those rays then provides information on whether or not it collides

with any object within a predefined distance, and what is the distance to the collision location.

Direct Agent Perception, similar to the method used by Xu and Karamouzas [186] is an alter-

native approach, where the agent directly receives the positions of other agents within a certain

range, along with other relevant parameters. The reference frame in which the information is

passed follows the chosen proprioception model (i.e. Absolute, Relative or Egocentric). This has

the possible benefit of directly giving access to relevant information, but it introduces two im-

portant complications. Firstly, this method cannot canonically represent obstacles. While small,

human-sized obstacles can be treated as stationary agents, large obstacles like walls need a different

approach. Secondly, the number of neighboring agents is variable, and can grow very large in high

density scenarios. The standard Multi-Layer Perceptron architecture cannot handle variable-sized

inputs, so this variability has to be accounted for in some way. Furthermore, the order in which

57

neighboring agents are observed is irrelevant, so a permutation-invariant architecture is necessary

to decrease the effective size of the observation space.

In this work, we also test a multimodal approach which combines both Raycasting and Agent

Perception, described in more detail in Section 3.4.2. With this hybrid method, the raycasting

is only used to perceive static obstacles such as walls, ignoring other agents, whose positions are

instead observed directly. We hypothesize that this might enable gaining the benefits of both

methods – the agent has accurate knowledge of others, as well as a general idea of the surrounding

layout, sufficient for navigation.

Reference Frames

Absolute observations [156] use a bird’s-eye view on the global scene. The agent observes a vector

consisting of its position p and the position of its goal pg in the global coordinate frame, its

current orientation ϕ (which is relevant for some choices in Action Spaces), and its current velocity

v. Using the Agent Perception approach, the agent observes the positions pi and velocities vi of

nearby agents in the global frame.

Relative observations [186, 106, 185], like Absolute, use the global frame, however it is translated

so that it is centered on the agent. It again receives its absolute position p and velocity v in order

to retain the information about the large context, but the goal position is given relatively to the

agent’s own position, as pg − p. Similarly, using Agent Perception, other agents’ positions are

given as pi − p, and velocities are given in the absolute form vi.

Egocentric observations [63, 93] use the agent’s local frame according to its orientation. The

agent observes its position p and orientation angle ϕ in the global frame. We write Rϕ to be

the rotation matrix associated with the agent’s current orientation. The agent observes its goal

position as Rϕ(pg −p). Using Agent Perception, the positions of other agents are also represented

as Rϕ(pi − p), and their observed velocities are Rϕv.

While each of these has a theoretical justification (moving from absolute information about the

scene, towards a more human-like first-person view), it is not immediately obvious which one is

the best. On the one hand, absolute observations can give a high-level overall view of the scene,

potentially aiding coordination. On the other hand, a relative or egocentric view allows agents to

better reuse experiences between different positions and situations. If the agent is heading towards

its goal, it is not that important whether it is to the left or to the right, looking from a bird’s eye

view. Since the Egocentric observations lose this information, navigation might be expected to be

learned more efficiently. Note that the choice of the reference frame also affects the structure of

Agent Perception.

3.2.3 Action Space and Dynamics

Human motion is highly complex, and a biomechanically accurate simulation of human motion

is a challenging research problem in of itself, so for the purposes of creating virtual crowds, we

use a simplified model. The simplest choice is holonomic locomotion [67], where at each step,

the agent can choose its velocity constrained only by its magnitude. However, this approach does

not correspond well to the motion constraints of real humans. Arechavaleta et al. [10] propose a

nonholonomic model, in which an agent can move in the direction of its current orientation, and

incrementally change its orientation for the next timestep.

58

(a) Cartesian Velocity. (b) Cartesian Acceleration.

(c) Polar Velocity. (d) Polar Acceleration.

Figure 3.1: A schematic representation of the available action spaces. In each case, we take a bird’s-
eye view of an agent moving in the positive Y direction at an intermediate speed, represented by
the blue arrow. The blue circle represents the space of all physically possible velocities (i.e. below
the maximum speed). The green area represents the velocities that the agent is able to have in
the following timestep under the specific action space.

59

Allowing the agent to freely choose its velocity at every timestep gives it much more flexibility in

choosing its behavior. However, from the perspective of Newtonian mechanics, it is more physically

justified for the agent to directly choose its acceleration. This would mean that the velocity change

at each timestep is incremental.

Similarly, there is a choice in how the actions should be represented. We can take the bird’s eye

view, where the agents choose their actions according to an absolute reference frame, moving up

or down, left or right. Alternatively, we can take a more individual perspective, where the agents

operate in a polar frame, choosing their linear movement and the direction of that movement.

For this reason, we consider four different dynamics models of the environment: Cartesian

Velocity, Cartesian Acceleration, Polar Velocity, and Polar Acceleration.

Cartesian control (used by [186, 63]) implies that the agent separately chooses the x and y

components of its motion - either of its velocity or acceleration.

Polar control (used by [93, 106, 156, 185]), implies that the agent separately updates its orienta-

tion angle, and its linear speed. The linear speed is again updated either by choosing an arbitrary

value below a certain magnitude (velocity controls), or by incrementally updating it according to

the acceleration chosen by the agent.

Acceleration controls (used by [63, 186]), are modeled in our implementation using a linear

damping model. This means that given an acceleration at chosen by the agent as its action, the

updated velocity will be

vt = vt−1 + (at − λvt−1)∆t

where λ is chosen so that we obtain the same maximum speed as in velocity controls, which is

equal to 2m
s .

With velocity controls (used by [93, 106, 156, 185]), the agent can choose an arbitrary speed of

a magnitude lower than 2m
s .

In Cartesian controls, the agent’s orientation is defined to be parallel to its current velocity. In

Polar controls, the orientation is directly controlled, and the velocity is parallel to the orientation.

3.3 Reward Function Design

Designing the reward function is arguably the most impactful, and the most difficult part of creating

an RL-driven crowd simulation. The two components which are present in all existing work are

a positive term correlated with reaching the goal, and a negative term correlated with collisions.

Beyond that, various elements may be included to promote certain behavior characteristics, or to

improve training performance through reward shaping. In this work, we consider the following

reward components based on prior work:

1. Reward for reaching the goal Rg = cg (once) [106, 156, 185]

2. Reward for approaching the goal Rp = cp(dt − dt−1) (every timestep) [186, 63, 93, 106, 156,

185]

3. Reward for maintaining a comfortable speed Rv = −cv|v − v0|ce (every timestep) [186]

4. Penalty for collisions Rc = −cc (every collision, every timestep) [186, 63, 93, 106, 156, 185]

5. Reward for urgency Rt = −ct (every timestep) [156]

60

where cg, cp, cv, ce, cc, ct are arbitrary (typically positive) coefficients. Their roles are as follows:

Rg is the main (sparse) reward representing the agent’s destination. Rp provides a dense reward

for the navigation objective to enable faster training. Rv incentivizes moving at a comfortable

speed v0. We propose raising the absolute difference of speeds to an arbitrary power ce in order to

further shape the behavior. Rc makes agents avoid colliding with obstacles and with one another.

Rt is a commonly used reward component in goal-based RL environments, as it incentivizes the

agents to reach their goal sooner rather than later.

3.3.1 Energy and Metrics

When considering different reward functions, it is important to have metrics that are independent

of the specific reward formulation in order to have a meaningful comparison. For this reason, we

consider two types of metrics.

Firstly, for each component of the reward function, we compute an unnormalized value measur-

ing its performance, which can then be compared between different training runs. For example, we

consider the total number of collision, regardless of the size of the collision penalty in the reward

function.

Secondly, we compute the mean energy expenditure of all agents in the scene. We use the

following formula [179, 45]:

Et = es + ewv
2

where Et is energy spent per second, per kilogram body mass (J/kg·s), es and ew are constants,

and v is the current velocity (m/s). We use the values of es = 2.23 and ew = 1.26 of a typical

human. This induces an optimal walking speed of v∗ =
√

es
ew

= 1.33 m/s which we use as the

preferred walking speed. Work by Bruneau et al. [20] suggests that when navigating to avoid

collisions, people tend to choose a path that minimizes the energy usage, so we consider it to be a

valuable metric describing the efficiency of the generated trajectory.

3.3.2 Reward and Preferred Velocity

As we see from the energy optimization mechanism, humans tend to move at a certain speed which

is below their maximum possible speed. This must be reflected in the reward function that the RL

agent optimizes. However, it goes against the typical RL incentives to obtain rewards sooner due

to the discounted utility model [160].

The interaction between the values of cg, cp, cv, ce, ct, γ, and Tmax, make the effective preferred

velocity nontrivial to predict, and as a consequence – to design. Consider a simplified environment

model in which the agent must travel a distance d towards its goal, with no other agents or

obstacles. In this case, the only decision it makes is the velocity throughout its motion, under the

assumption that it will travel to its goal in a straight line at a constant velocity. In this model, we

can express the total obtained reward as:

R(v) = γT cg +

T∑
i=0

γi (cpv∆t− cv|v − v0|ce − ct) (3.1)

where T = min(Tmax, ⌈ d
v∆t⌉) Due to the discounted sum whose bounds are dependent on the

velocity itself, it is difficult to investigate this expression analytically. Nevertheless, we can gain

some insight through numerically analyzing this model. Note, however, that this model does not

61

0.0 0.5 1.0 1.5 2.0
Velocity (m/s)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
re

wa
rd

/e
ne

rg
y

Reward, ce = 1
Reward, ce = 2
Energy

(a) Reward and Energy.

1.0 1.5 2.0 2.5 3.0
Velocity reward exponent ce

0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045

M
SE

(b) Velocity reward exponent.

0.0 0.2 0.4 0.6 0.8 1.0
Coefficient cv

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Op
tim

al
 v

el
oc

ity
 (m

/s
)

ce = 1
ce = 1.5
ce = 1.92

(c) Velocity reward coefficient.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Velocity (m/s)

0.0

0.2

0.4

0.6

0.8

1.0

En
er

gy
 re

wa
rd

= 0.99
Tmax = 200

= 0.99
Tmax = 500

= 1
Tmax = 200

(d) Energy-based reward.

Figure 3.2: (a) Rewards and energy for an agent moving at a constant speed, in the simplified
model described in Section 3.3.2. All curves are normalized to be in the [0, 1] range in order to
enable direct comparison. We consider energy values with the opposite sign, because energy is
supposed to be minimized, while the reward is maximized. (b) MSE between the reward and
the energy, as a function of the velocity reward exponent. (c) Optimal velocity as a function
of the velocity reward coefficient cv, varied by the exponent ce. (d) Discounted negative energy
expenditure as a function of velocity.

62

capture the full complexity of RL optimization, and only serves to build general intuition.

Consider the following set of parameters values – based on prior work and then manually

adjusted to produce reasonable behaviors – as a starting point of our analysis: cg = 10, cp = 1,

cv = 0.75, ce = 1, ct = 0.005 v0 = 1.33, γ = 0.99, Tmax = 200, d = 8, ∆t = 1
12 .

Let us investigate the full reward as a function of velocity, alongside the negative energy ex-

penditure as defined in Section 3.3.1. This relation is shown in Figure 3.2a. We can see that while

there is a correlation between reward and energy, there are two main discrepancies. Firstly, the

energy has a local optimum at v = 0, which is caused by the velocities that cause agents to not

reach their destination within the allotted time. Secondly, due to the absolute difference term in

Equation 3.1, there is a sharp decrease in the reward (blue curve) which does not occur in the

energy.

To improve this, we evaluate the impact of the exponent ce from the reward function. In

Figure 3.2a, we also show ce = 2 (orange). There, the curve is smoother and closer to the

corresponding energy values when the energy is near the optimum. To quantify this, we vary

the parameter ce and compute the mean square error between the two normalized curves in the

range 1m
s < v < 2m

s , as we consider lower velocities to be less relevant due to their low efficiency.

As we show in Figure 3.2b, the optimal value under this simple model is ce = 1.92. We further

validate this in Section 3.5, where we use different values of ce for training actual RL agents.

It is worth mentioning that with γ = 0.99, using ce = 2 increases the effective optimal velocity

to v∗ = 1.39m
s . This can be further adjusted using other parameters. While modifying γ does

not affect the optimal velocity when ce = 1, any higher values of ce make it so that decreasing γ,

increases v∗.

The other reward coefficients also have an impact on the optimal velocity. When adjusting cv

with ce = 1, there is a threshold around cv = 0.09 below which the optimal velocity is the maximum

value of 2m
s . Above that threshold, the optimal velocity is the preferred value of v0 = 1.33m

s .

However, with ce > 1, the transition between these two realms becomes more gradual, as we show

in Figure 3.2c.

3.3.3 Energy as reward

Finally, it is worth considering using energy directly as a reward function for training RL agents. At

a glance, it seems like it would incentivize efficient motion at the optimal velocity. However, there

are two apparent problems which arise in this paradigm. Firstly, as we already see in Figure 3.2a,

even in our simplified model there is an attractive local optimum at v = 0. This is likely to be

even more impactful in practical scenarios, because moving at the right speed would lead to a

very low reward if the direction of the movement is wrong. The reason for this is the time limit

present in the environment – moving at a non-zero speed only pays off in terms of energy if the

agent eventually reaches the goal. Otherwise, it will expend energy until the end of the episode,

and by reducing its velocity, it can reduce the energy expenditure. Secondly, the commonly used

method of reward discounting has a significant impact on the optimal policy. Using a discount

factor of γ = 0.99 leads to a situation where the global optimum of the discounted energy-based

reward function is standing still with v = 0. Potential solutions to these problems include using a

discount factor γ = 1 or a nonexponential discounting mechanism, increasing the time limit, and

using a curriculum-based approach.

Conclusion. Even in the absence of collision avoidance and other, more complex tasks, one

63

(a) Circle scenario. (b) Corridor scenario.

(c) Crossing scenario. (d) Random scenario.

Figure 3.3: Agent’s initial positions and goals in four scenarios: (a) Circle with 30 agents. (b)
Corridor with 72 agents. (c) Crossing with 32 agents. (d) Random with 15 agents.

must pay attention to the parameters defining the reward function. Notably, using an exponent

in the velocity reward term causes other parameters to nontrivially affect the effective optimal

velocity. For this reason, when designing the reward function, it is worthwhile to validate its

parameters using a simpler model to ensure it has desired properties, whether that is closeness to

the energy expenditure, or a specific value of the preferred velocity.

3.4 Experimental setup

In order to evaluate the impact and quality of the various design choices, we apply them on four

commonly used crowd scenarios, in order to provide a wide range of interactions between agents:

Circle, Corridor, Crossing, Random (see Figure 3.3). In the Circle scenario, agents start on the

perimeter of a circle, with a random noise applied independently in both Cartesian directions.

Their goals are placed on the antipodal points of the circle, with an independent noise of the same

magnitude applied. In Corridor, agents start at two ends of a straight corridor whose width is

64

4 meters and length is 20 meters. They start either in a regular grid or in a random formation,

and their goal is to reach the opposite side of the corridor. In Crossing, the agents start at the

ends of two corridors intersecting at a right angle, with the same size as in Corridor. Similarly,

they spawn either in a regular grid or a random formation, and must reach the other end of their

respective corridors. In Random, the agents’ starting positions and goals are generated according

to a uniform distribution with a given maximum size. In each of these scenarios, the area available

to the agents is a square of 20x20 meters. In both Circle and Random, there are optional small

obstacles placed randomly in the scene, represented as immovable agents.

Implementation The code1 used in this work is available online. We use identical agents repre-

sented as circles of radius 0.2 m. Their collisions are treated as rigid body collisions, processed by

the PhysX engine default in Unity 2021.3, used via the Unity Ml-Agents framework [73]. We use

a decision timestep ∆t = 1
12 s, similar to the values used in prior work. To obtain a more accurate

simulation, the physics of the scene are updated 10 times after each decision, for an effective simu-

lation timestep of 1
120 s. The agent’s action is repeated during each of these updates. With agent

perception observations, each agent can see the 10 nearest agents. While these implementation

details (i.e. agent size, collision handling, physics engine, timestep) can also affect the resulting

simulations and the training performance, we do not explore their impact in this work, because we

expect it to be lower compared to the other choices listed in this paper. It is nevertheless important

to be aware of these choices for reproducibility purposes. A single training takes between 1 and 5

hours on GPU, depending on the number of agents and the difficulty of the scene, while running

8 independent training runs in parallel.

3.4.1 Policy Optimization

In this work, we train RL agents using PPO with Generalized Advantage Estimation (GAE) [145]

to estimate the advantages. The agents are trained in an independent paradigm with parameter

sharing, that is they share the same policy network, but each agent takes its own action based on

its private observations. The neural network outputs the mean of a Gaussian distribution, and the

standard deviation is kept as a trainable parameter of the network.

3.4.2 Network Architecture

In order to appropriately process the Agent Perception observations, we use a neural architecture

depicted in Figure 3.4. It is inspired by prior work such as Deep Sets [193] and Mean Embed-

ding [68], and extends the architecture used by Xu and Karamouzas [186].

The main desirable property of our architecture is permutation invariance – given multiple

identical nearby agents, it should not matter in what order their representations are input into the

network, as this order is completely arbitrary. Without this property, the agent would need to learn

this invariance itself, which quickly becomes expensive as the number of observed agents grows.

Furthermore, the architecture should be able to accept a variable number of observed agents, as

this quantity will vary throughout the episode. For this reason, we use the following model as an

1The code for the environment is available at https://github.com/RedTachyon/CrowdAI, and the training code
is available at https://github.com/RedTachyon/coltra-rl.

65

https://github.com/RedTachyon/CrowdAI
https://github.com/RedTachyon/coltra-rl

Proprioception Agent 1 ... Agent N

MLP1 MLP2 MLP2

Sum

Concatenation

MLP3

Raycast

Figure 3.4: The neural architecture used as the policy. Green blocks represent inputs, blue blocks
represent feed-forward neural networks, yellow blocks represent vector operations, red blocks rep-
resent outputs. Depending on the observation model used, certain elements of the architecture are
disabled.

66

embedding of nearby agents:

ϕ

(∑
i

ψ(xi)

)
where ϕ and ψ are regular MLP neural networks, and xi is the observed information about an agent

i. The summation is performed over all agents visible to the agent observing the scene. Because of

the summation operator, this architecture fulfills both previously stated desiderata, as the ordering

information is lost, and any number of agents can be processed into a fixed-size embedding. This

embedding is then concatenated with the main stream of the neural network, which processes the

proprioceptive observations, as well as optionally the raycasting.

3.5 Experiments

In this section we describe the specific experiments we performed, along with their results and

interpretation. Experiments are primarily evaluated in terms of their obtained rewards and energy

usage, but also other behavior characteristics when necessary.

3.5.1 Dynamics and Observations performance

In order to robustly evaluate the performance of various dynamics and observation models, we

run a hyperparameter search with each action space, with each observation reference frame, on

a Circle scenario with 12 agents and a radius of 4 meters. Then, we use the best-performing

hyperparameters of each model for further experiments used in this section. We sample 150 sets

of hyperparameters for each (dynamics, observations) pair for a total of 1800 training runs. We

use the default sampler available in Optuna [4]. These runs use a fixed reward function, with

parameters cg = 10, cp = 1, cv = 0.75, ce = 1, cc = 0.05, ct = 0.005.

We show the results of the hyperparameter search in Figure 3.5. We consider the 5 best-

performing hyperparameter sets for each model, and report their aggregate performance. There

is a clear trend where agents with Egocentric observations perform better than Absolute and

Relative versions. Similarly, Polar controls perform better than Cartesian controls, with Polar

Velocity controls with Egocentric observations performing the best out of all investigated variants.

Interestingly, in the case of Cartesian Velocity controls, while the reward follows the same trend,

the energy usage is in fact the lowest with Absolute observations. This highlights the discrepancy

between the reward function and the energy metric, showcasing the need for careful evaluation of

emergent behaviors.

3.5.2 All Scenarios

Using the hyperparameters obtained in the experiment described in Section 3.5.1, we evaluate the

various design choices on several environments. Specifically, we train agents in a Circle with 12

agents and a radius of 6 meters (circle12), a Corridor with 50 agents (corridor50), a Crossing with

50 agents (crossway50), and a Random scenario with 20 agents and random obstacles (random20).

Due to the large number of possible combinations (3 architectures × 4 dynamics × 3 observa-

tions × 4 scenarios), we consider the performance of each individual choice, averaging the remaining

ones, in each environment separately. The results are in Figure 3.6.

67

Ca
rte

sia
n

Ac
ce

le
ra

tio
n

Ab
so

lu
te

Ca
rte

sia
n

Ac
ce

le
ra

tio
n

Re
la

tiv
e

Ca
rte

sia
n

Ac
ce

le
ra

tio
n

Eg
oc

en
tri

c
Ca

rte
sia

n
Ve

lo
cit

y
Ab

so
lu

te
Ca

rte
sia

n
Ve

lo
cit

y
Re

la
tiv

e
Ca

rte
sia

n
Ve

lo
cit

y
Eg

oc
en

tri
c

Po
la

r A
cc

el
er

at
io

n
Ab

so
lu

te
Po

la
r A

cc
el

er
at

io
n

Re
la

tiv
e

Po
la

r A
cc

el
er

at
io

n
Eg

oc
en

tri
c

Po
la

r V
el

oc
ity

Ab
so

lu
te

Po
la

r V
el

oc
ity

Re
la

tiv
e

Po
la

r V
el

oc
ity

Eg
oc

en
tri

c

0
2
4
6
8

10
12
14

Re
wa

rd

(a) Reward function (higher is better).

Ca
rte

sia
n

Ac
ce

le
ra

tio
n

Ab
so

lu
te

Ca
rte

sia
n

Ac
ce

le
ra

tio
n

Re
la

tiv
e

Ca
rte

sia
n

Ac
ce

le
ra

tio
n

Eg
oc

en
tri

c
Ca

rte
sia

n
Ve

lo
cit

y
Ab

so
lu

te
Ca

rte
sia

n
Ve

lo
cit

y
Re

la
tiv

e
Ca

rte
sia

n
Ve

lo
cit

y
Eg

oc
en

tri
c

Po
la

r A
cc

el
er

at
io

n
Ab

so
lu

te
Po

la
r A

cc
el

er
at

io
n

Re
la

tiv
e

Po
la

r A
cc

el
er

at
io

n
Eg

oc
en

tri
c

Po
la

r V
el

oc
ity

Ab
so

lu
te

Po
la

r V
el

oc
ity

Re
la

tiv
e

Po
la

r V
el

oc
ity

Eg
oc

en
tri

c

0
5

10
15
20
25
30
35

En
er

gy

(b) Energy expenditure (lower is better).

Figure 3.5: Comparison of training results after a hyperparameter search in the Circle 12 scenario.
(a) Mean episodic reward (b) Mean energy expenditure. Black bars represent the standard error
of the mean.

68

0 10 20 30 40 50 60
Energy

Raycasting
Raycasting + AP

AP

Absolute
Relative

Egocentric

Cartesian Acceleration
Cartesian Velocity
Polar Acceleration

Polar Velocity
AP

Relative
Polar Acceleration

(a) Scenario circle12

0 10 20 30 40 50 60 70 80
Energy

Raycasting
Raycasting + AP

AP

Absolute
Relative

Egocentric

Cartesian Acceleration
Cartesian Velocity
Polar Acceleration

Polar Velocity
Raycasting + AP

Relative
Cartesian Acceleration

(b) Scenario crossway50

0 10 20 30 40 50 60 70 80
Energy

Raycasting
Raycasting + AP

AP

Absolute
Relative

Egocentric

Cartesian Acceleration
Cartesian Velocity
Polar Acceleration

Polar Velocity
AP

Egocentric
Cartesian Acceleration

(c) Scenario corridor50

0 10 20 30 40
Energy

Raycasting
Raycasting + AP

AP

Absolute
Relative

Egocentric

Cartesian Acceleration
Cartesian Velocity
Polar Acceleration

Polar Velocity
AP

Absolute
Cartesian Velocity

(d) Scenario random20

Figure 3.6: Comparison of various design choices in a given environment. The last bar corresponds
to the best-performing agent across all design choices. All values are averaged across 8 independent
training runs with different random seeds and otherwise identical parameters. Lower is better. AP
stands for Agent Perception as defined in Section 3.2.2.

69

We run each training for 1000 PPO iterations to ensure sufficient time for convergence. Because

the neural networks are relatively small (2-6 layers of 32-128 units, depending on the architecture

and the model, found via hyperparameter optimization), the main bottleneck is the CPU power

required to run many copies of the environment as opposed to the GPU memory.

While the exact results vary between scenarios, there are some regularities. Most notably, Agent

Perception consistently outperforms raycasting-based approaches with otherwise well-performing

settings. In the case of the crossway50 scenario, it is beneficial to include raycasting information

around the surrounding walls, however overall it does not seem to provide a large benefit as

compared to the pure AP approach. This is likely due to the static nature of the evaluated

environments. Given the current position in the global frame, the agent can determine its proximity

from obstacles. Unsurprisingly, including raycasting to perceive walls, deteriorates the performance

in scenarios without a significant presence of walls, as this information effectively becomes an

additional source of noise.

In most cases, it is best to use Egocentric or Relative observations, with some Relative runs

sometimes performing the best. A notable exception is the random20 scenario, where a combination

of Absolute observation with Cartesian Velocity dynamics outperforms any other option. The

difference is the fact that in all other scenarios, the agents need to predominantly move in a

general “forward” direction, whereas in the random scenario, the goal can be in an arbitrary

position relative to the agent’s orientation.

An interesting observation is the common “failure mode” of Raycasting models, particularly in

Circle scenarios. They generally perform worse than Agent Perception models, but their qualitative

behavior may be more desirable due to its asymmetry. Because they do not manage to reach the

perfectly symmetrical trajectories achieved by Agent Perception, there is a higher variability in

the individual trajectories, making them look more realistic. This indicates that simply training a

strong RL algorithm on any objective which does not explicitly reward human-likeness is likely to

lead to overly perfect, unrealistic trajectories.

Conclusion. We recommend using AP as opposed to the more commonly used raycasting

for providing agents with the information about their surrounding. In scenarios where walls are

a prominent feature, it may be beneficial to add raycasting which only perceives the distance to

walls, and ignores other agents. In scenarios where agents may need to make sharp turns to reach

their destination, Cartesian Velocity controls with Absolute observations are favorable. Otherwise,

nonholonomic controls combined with egocentric or relative observations typically perform better.

3.5.3 Velocity Reward Exponent

In Section 3.3.2, we show that using an exponent in the velocity reward term makes it match more

closely to the energy consumption. To validate this, we train Egocentric Polar Velocity agents on

a Circle 30 scenario, and Egocentric Polar Acceleration agents on a Crossway 50 scenario. In both

cases, an exponent ce > 1 can lead to a higher efficiency in the trained agents, as compared to the

simple ce = 1 (see Figure 3.7). The exact optimal value of ce depends on the scenario and must

be determined on a case-by-case basis.

3.5.4 Importance of collision penalty

In a pursuit of simplicity in the design of the reward function, one might be tempted to elimi-

nate the collision penalty altogether. After all, if collisions result in unfavorable physical results

70

1.0 1.2 1.4 1.6 1.8 2.0
Velocity reward exponent ce

44.0

44.5

45.0

45.5

46.0

46.5

En
er

gy
 u

sa
ge

(a) Circle 30 scenario

1.0 1.2 1.4 1.6 1.8 2.0
Velocity reward exponent ce

60

61

62

63

64

En
er

gy
 u

sa
ge

(b) Crossway 50 scenario

Figure 3.7: Comparison of energy usage in agents trained with a different exponent in the velocity
term of the reward function. Lower is better.

-0.2 -0.1 -0.05
-0.01

-0.005
-0.001 0.0

Collision penalty

0
10
20
30
40
50
60
70
80

En
er

gy

(a) Energy usage.

-0.2 -0.1 -0.05
-0.01

-0.005
-0.001 0.0

Collision penalty

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

(b) Success rate.

Figure 3.8: Comparison of energy usage and success rate in agents trained in Circle 12 scenario,
with a varied collision penalty in the reward function.

71

0 20 40 60 80
Energy

-20.0
-10.0

-5.0
-2.0
-1.0
-0.5
-0.2
-0.1

-0.05
-0.01

-0.005
-0.001

0.0
Co

llis
io

n
pe

na
lty

(a) Energy usage.

0 2000 4000
Collision Count

-20.0
-10.0

-5.0
-2.0
-1.0
-0.5
-0.2
-0.1

-0.05
-0.01

-0.005
-0.001

0.0

Co
llis

io
n

pe
na

lty
(b) Collision count.

0.0 0.3 0.6 0.9
Success Rate

-20.0
-10.0

-5.0
-2.0
-1.0
-0.5
-0.2
-0.1

-0.05
-0.01

-0.005
-0.001

0.0

Co
llis

io
n

pe
na

lty

(c) Success rate.

Figure 3.9: Comparison of energy usage, collision count and success rate in agents trained in
Crossway 50 scenario, with a varied collision penalty in the reward function.

(i.e. unexpected change of velocity), sufficiently intelligent agents should learn to avoid them by

themselves, at least to the extent that is necessary for effective navigation.

In Figure 3.8 we show how the collision penalty affects the energy usage, and how often the

agents reach their destination. There is an optimum around −0.05, where the agents reliably reach

their goals. Using a penalty that is too high or too low leads to a deterioration of the agents’

performance in terms of the navigation task.

3.5.5 Common Failure Modes

Due to the stochasticity inherent to RL training, the trained agents often exhibit various types of

suboptimal behaviors. This can be identified via tracking the performance (in terms of the reward

and energy), but also by observing emergent behaviors that the agents learn to execute. Here, we

describe some of the common ways in which the RL-trained crowds are suboptimal.

Instability When training an RL agent using PPO, the trained policy is stochastic. This is

required both for training, to ensure that the agent takes sufficiently diverse actions; but it is also

at the core of the resulting policy. In order to deploy or evaluate the agent, we must choose a

method of sampling actions from the output of the policy. The two natural options are taking the

mean for the “optimal” action, or simply sampling from the distribution. The former does not

fully correspond to the optimization objective, and in a crowd scenario, it can get stuck on an

obstacle or another agent. The latter necessarily causes the policy to act randomly, which leads to

potential unpredictable mistakes due to small erratic movements.

Value alignment failure As we describe in Section 3.3, the reward function used in this and

prior work is a weighted sum of several components with largely arbitrary coefficients. This implies

that there is no guarantee it will correspond well to the actual objective we intend the agents to

achieve. Furthermore, while the energy usage can be a useful, non-arbitrary metric, it is also

sensitive to some details of the practical RL setup, as we show next.

Consider the experiment described in Section 3.5.4, investigating the importance of the collision

penalty. We perform the same analysis on the Crossway 50 scenario with Polar Velocity dynamics

and Egocentric observations, extending the range of evaluated collision penalties to −20. We

72

present these results in Figure 3.9.

When considering the energy usage and collisions, the result seems to follow the intuition with

a collision penalty up to −1. When the collision penalty reaches −20, we expect the performance

to deteriorate, since the penalty is so steep that the agents will never put themselves at any risk

of collision. We confirm this by investigating the success rate, which decreases with large collision

penalties. However, at the same time, the energy usage also decreases – in fact, using a very large

collision penalty leads to the lowest energy usage among the evaluated options. So while energy has

its value as a metric, it clearly breaks down in extreme cases, where most agents remain stationary.

This phenomenon is caused by a relatively short time limit. In general, energy minimization

induces a simple optimal velocity (see Section 3.3.1), in RL we must set a time limit after which

the episode is terminated. The energy penalty for not finishing the episode is relatively low when

compared to the energy cost of actually navigating to the destination, and an undesired emergent

behavior may turn out to be optimal according to the metrics.

Depending on the design choices made, this same problem can manifest itself differently. When

training on the same setup, but using different design choices, a commonly occurring emergent

behavior is that one group of agents efficiently navigates to their destination, while the other one

remains stationary. Similarly to the previous situation, the energy usage metric is very low in that

situation, but the success rate plateaus at 50%.

3.6 Discussion

In this work, we present an analysis of various design choices made by designers of RL-trained

crowd simulation systems. We show that many of these choices, typically ignored by researchers,

can in fact significantly impact the resulting simulation, in particular when evaluated in terms of

the energy efficiency. Here we summarize the main findings of this paper.

We show that the commonly used raycasting underperforms when compared to a method we

call Agent Perception where the information about neighboring agents is directly available. This

is likely a consequence of a much simpler and accessible representation of that information. Even

when raycasting uses frame stacking which enables movement perception, the reasoning needed to

infer the positions and velocities of nearby agents is rather complex.

Designing the right reward function is also important for obtaining desired properties of the

motion. Navigation, speed control, and collision avoidance rewards, all have to balanced in just

the right way that each of them contributes to the agent’s decisions. Crucially, quantitative

comparisons of crowds are non-trivial, because even ignoring the question of believability, the

arbitrary reward function and energy usage are flawed in certain scenarios.

Qualitative properties of the obtained motion in the Circle scenario indicate that a naive ap-

proach of reward maximization for any reward that does not explicitly incentivize human-like

behavior is likely to create trajectories that look artificial, or even too carefully choreographed to

pass for natural human behavior. While decreasing the model’s capacity and performance might

lead to more believable behavior in the short term, we believe a more deliberate approach is

necessary to truly approach human-like behavior.

In summary, our main findings are as follows:

1. Direct agent perception outperforms simple raycasting

2. Egocentric controls tend to outperform absolute ones

73

3. The reward design is important and nontrivial

4. Many failure modes may still occur in RL trained crowds

5. Simple reward is not sufficient for human-like behavior

3.6.1 Limitations and Future Work

All experiments in this work are performed on relatively small, static scenarios with a single

destination. The described design choices mostly affect local navigation and more complex scenarios

can be expressed as a sequence of partial objectives or checkpoints. That being said, naively

implementing this would likely cause issues near the transition points where agents switch their

destinations. Therefore, a more complex training scenario would be beneficial so that the agent is

exposed to these situations.

Furthermore, each agent is only trained on a single scenario. Prior work suggests that using

various scenarios in the training process enables generalization, which was considered out of the

scope of this work. We also limit our analysis to the efficiency of the resulting trajectories, ignoring

realism or believability.

Similar to prior work, we train agents using an arbitrarily designed reward function. While using

the energy usage as a reward has certain problems (see Section 3.3.2), it might be a viable option to

use a curriculum-based approach where the reward function changes as the training progresses; and

a different discounting mechanism that improves the global optimization properties. Furthermore,

by using recent work on evaluating the realism of generated trajectories [33], a promising direction

is using a realism metric as a reward. This would allow going beyond efficiency, and creating

crowds which behave in a believable way.

It is also possible to improve the dynamics available to the agent. In this work, we use relatively

simple, 2-DoF models, but the RL paradigm makes it viable to implement arbitrary nonholonomic

constraints like sidesteps or walking backwards, without having to change the learning logic. Thus,

a promising option is introducing a more complex, human-like range of motion actions available

to the agent, with the goal of improving the believability of motion.

3.6.2 Conclusions

Crowd simulation with RL is a complex problem, and despite recent advances, many challenges

remain. Observations, actions, underlying physics, and especially the reward function, all have a

significant impact on the results, and a lack of attention to these design choices makes it impos-

sible to compare various approaches. We bring these issues to attention, and introduce a basic

methodology for comparison between various approaches by comparing the energy expenditure

under a specified time limit. In the absence of a standard benchmark, we call researchers to be

more explicit and precise about their choices, and encourage them to explore different options in

their work, to ensure the robustness of their approach.

Continuing this line of work, we extend our investigation into the reward function started in

Section 3.3. There, we identified the main problems with a naively designed reward function,

and proposed a simple heuristic approach that worked “well enough”. Next, we aim to approach

this problem more methodically and design a reward function that can be successfully applied to

learning crowd navigation, using as few arbitrary components as possible.

74

Chapter 4

Reward function design

In Chapter 3, we provided a basic analysis of the reward function design, along with the problems

with simply optimizing the energy usage as the reward. In this chapter, we dive deeper into this

topic by formally introducing two arguments preventing the usage of direct energy optimization

– the local optimum and the global optimum problems. To address these issues, we propose

adding a potential term, whose scaling factor we derive analytically based on the desired properties.

We also explore alternative solutions, such as curriculum learning for the local optimum problem,

and setting the discount factor γ = 1 for the global optimum problem.

4.1 Introduction

Reinforcement Learning (RL) holds a unique potential for simulation of human crowds, offering

flexibility and power that traditional control or planning algorithms often lack. However, success-

fully using RL for this purpose brings about new challenges, primarily rooted in the need to design

an effective reward function.

The design of the reward function is crucial for the success of RL algorithms in real-world

applications. The balance between sparsity and density of rewards has major implications for the

performance of these algorithms. Sparse rewards may lead to the standard algorithms not con-

verging in reasonable time. Conversely, overly dense reward could potentially impact the optimal

(a) Circle scenario.
(b) Corridor sce-
nario.

(c) Crossing sce-
nario. (d) Choke scenario. (e) Car scenario.

Figure 4.1: Agent’s initial positions and goals in five scenarios: (a) Circle with 40 agents. (b)
Corridor with 50 agents. (c) Crossing with 50 agents. (d) Choke with 20 agents. (e) Car with
20 agents. In each scenario, agents must reach the goal with the same color as them. In the circle
scenario, initial starting positions are randomly perturbed during each episode. In the car scenario,
the obstacle at the bottom of the scene moves upwards.

75

policy and the relative performances of various suboptimal policies. This issue is particularly rele-

vant in the context of simulating human crowds where, apart from clear objectives like navigation

and collision avoidance, the goal of reproducing human-like behavior remains somewhat vague.

During locomotion, humans tend to move at a certain comfortable speed that is specific to

the individual, usually around 1.3 m/s [179]. Following Guy et al. [45], this is as a result of

minimizing the energy expended when moving between two points. In principle, this measure

could be used as a reward function for an RL agent to optimize. In practice, however, this tends to

be ineffective due to the unique structure of energy minimization, where agents must take short-

term negative rewards to obtain long-term positive rewards. The typical solution is designing an

artificial reward function, lacking an explicit connection to the energy minimization aspect, but

focusing on rewarding movement towards the goal at the right speed.

We propose the development of a more principled reward function that takes into consideration

energy efficiency of motion, serving as a proxy for human-likeness. This choice stems from the

lack of metrics that specifically quantify human-likeness in existing literature. It is important to

note that energy efficiency does not fully describe human behavior, ignoring aspects like long-term

goals and subtle inter-personal interactions. Nonetheless, this approach lays the groundwork for

more advanced future methods.

We validate our approach both theoretically and empirically. First, we analyze the properties

of various reward functions under the discounted utility paradigm. Second, we train RL agents

using these reward functions, and compare their performance using the metric of energy usage.

Our contributions are:

1. Physically-based extension of the energy usage model that accounts for acceleration.

2. Evaluation of various reward functions as proxies for energy minimization.

4.2 Energy Usage Model

In this work, we follow the hypothesis of the Principle of Minimum Energy (PME) as stated by

Guy et al. [45], according to which humans tend to choose their trajectories based on minimizing

the energy usage. Therefore, we use the energy efficiency as the main benchmark for the quality

of a given trajectory. While it does not fully describe human-likeness, it is well-defined and easy

to estimate with a simple model.

As a starting point, we consider a model of energy usage based on biomechanical research [179],

and used as a metric in a number of works concerning crowd simulation [45, 20, 186, 63, 87]. We

estimate the energy used in a discrete timestep ∆t as:

E = (es + ewv
2)∆t (4.1)

where es and ew are parameters specific to a given person, with typical values of es = 2.23 and

ew = 1.26 in SI units, computed per unit mass [179].

It is important to keep in mind that this model does not account for acceleration or turning, and

instead only applies to linear motion. In this case, the optimal velocity (i.e. one that minimizes the

energy usage on a fixed straight trajectory) is v∗ =
√
es/ew. This value emerges from integrating

the energy usage across the entire path – moving too quickly uses too much energy, and moving

too slowly extends the duration of the trajectory, also increasing the energy usage.

76

1.200 1.225 1.250 1.275 1.300 1.325 1.350 1.375 1.400
Velocity v

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

En
er

gy
 u

sa
ge

 p
er

 ti
m

es
te

p Basic model
Acceleration correction

Figure 4.2: Energy used in a single timestep when moving at a velocity of v, after having the
velocity of 1.3 m/s in the previous timestep, with ∆t = 0.01 s.

4.2.1 Acceleration correction

In order to improve the energy estimation, we expand the model in Equation 4.1 so that it also

considers the acceleration of agents throughout their trajectories. We start by deriving its basic

form. Consider a body moving at a constant velocity v, subject to a force opposite to the direction

of movement Fd = −λv. In Newtonian mechanics, we know that the amount of energy used during

displacement is E = Fs, where F is the applied force, and s is the distance. To adapt this to our

discrete model, we factor out the timestep, obtaining E = Fv ∆t. Substituting the force of drag

Fd, and setting λ = ew we get:

E = −λv2∆t = −ewv2∆t (4.2)

This is the energy lost due to drag in each timestep. To counteract it, the agent needs to use

energy equal to the absolute value of this quantity. Combining it with with a constant basal energy

usage of esdt, we get e = esdt+ ewv
2dt, recovering Equation 4.1.

To extend this reasoning, consider an agent that moves at velocities v0 and v in two consecutive

timesteps, that is with an acceleration a = v−v0

dt . Assume that the agent is applying a certain

force Fa in an arbitrary direction in order to modify its velocity. Using simple Euler integration,

we have:

v = v0 + F∆t− ewv0∆t = (1 − ew∆t)v0 + F∆t (4.3)

Transforming this to obtain the force, we get:

F =
1

∆t
(v − (1 − ew∆t)v0) =

1

∆t
(v − v0 + ewv0∆t) (4.4)

From this we can compute the energy usage as follows:

E = F · v∆t

= v · v − v · v0 + ewv0 · v∆t

= v · (
v − v0

∆t
)∆t+ ewv0 · v∆t

= (v · a + ewv0 · v)∆t (4.5)

77

Again taking the absolute value and adding a basal energy usage, we obtain our proposed model

for energy usage:

E = (es + |v · a + ewv0 · v|) ∆t (4.6)

To better understand Equation 4.6, consider an agent moving with linear acceleration a in the

following four cases:

1. Constant motion a = 0

2. Acceleration a > 0 ⇐⇒ v > v0

3. Passive deceleration 0 > a > −ewv0 ⇐⇒ v0 > v > (1 − ew∆t)v0

4. Active deceleration a < −ewv0 ⇐⇒ v < (1 − ew∆t)v0

In the first case a = 0, the agent moves at a constant speed v = ||v0|| = ||v1||. The energy

usage is then:

E = es∆t+ |0 + ewv
2|∆t = (es + ewv

2)∆t (4.7)

which agrees with Equation 4.1.

If a > 0, the agent increases its movement speed. The energy usage then simplifies to:

E = (es + av + ewv0v)∆t

= (es + ew(v − a∆t)v + av)∆t

= (es + ewv
2 + (1 − ew∆t)av)∆t

≈ es∆t+ ewv
2∆t+ av∆t (4.8)

where the term av∆t corresponds to the additional kinetic energy needed to move at a velocity v.

If a < 0, the agent decelerates. Note, however, that there are two distinct possibilities. If the

agent simply stops putting in effort, it will automatically slow down by a factor of (1 − ew∆t).

We call any deceleration below this threshold passive deceleration, which decreases the energy

usage. In contrast, if the agent wants to slow down to a speed lower than (1 − ew∆t)v0, this is

active deceleration, which requires using additional energy.

We depict this relationship in Figure 4.2. When the velocity remains constant at v = v0 =

1.3 m/s, the energy usage is the same in both models. The lowest energy usage (i.e. only from

the basal metabolic rate) occurs at v = (1 − ew∆t)v0 = 1.28 m/s, when the agent decelerates

naturally.

4.3 Navigation reward design

Our main goal in this work is designing a reward function which, when optimized, leads to a policy

that minimizes the energy usage, as estimated using the model from Section 4.2. In this section,

we discuss a few issues in designing such a reward function.

4.3.1 Energy as reward

A natural starting point is simply using a reward equal to the negative energy usage:

R = −es∆t− ewv
2∆t (4.9)

78

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Velocity v

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
re

wa
rd

 = 1, d = 10
 = 0.99, d = 10
 = 0.99, d = 1
 = 0.9995, d = 10

Figure 4.3: Normalized discounted reward, with energy optimization as the direct objective. De-
pending on the distance d and the discount factor γ, the global optimum is different, and in some
cases, the optimal behavior is standing still with v = 0.

or

R = −es∆t− |v · a + ewv0 · v|∆t (4.10)

This formulation has two critical issues, which make it unfit for being used as a reward function

directly. To see this, consider the base reward of Equation 4.9 for simplicity.

Local optimum

In an RL training procedure, each agent begins by taking random actions. In the case of microscopic

crowd simulation, that corresponds to choosing a direction, and setting either the velocity or the

acceleration in that direction. If an action leads to a higher reward, its probability increases, and

if it leads to a lower reward, its probability decreases.

Consider an agent with a simple objective of moving to a specific location, maximizing the

reward from Equation 4.9. The reward is accumulated from the beginning of the episode, until

the agent reaches the goal, or until a predefined time limit. Note that with this structure, the

real penalty for not reaching the goal is delivered by the agent having to accumulate the negative

reward until the time limit. If the time limit is sufficiently high, it is better for the agent to spend

some energy in order to reach its goal and not use any energy afterwards, as compared to spending

a long time at rest, even without using energy for movement.

However, during training, the agent is more likely to try to move, but fail reaching the goal. It

then gets the full time-based penalty, but also a penalty for using additional energy for movement.

The agent does not know how to reduce the time-based penalty, but it can decrease its energy

usage by slowing down. Eventually, it will settle into a local optimum of standing still, which is a

failure case.

Global optimum

The second problem is related to the fact that modern RL algorithms predominantly use the

discounted utility paradigm, weighing future rewards with an exponentially decaying discount

79

factor. Similarly to not reaching the goal, the penalty for moving too slowly is that the agent

will have to spend energy in many more timesteps towards the end of the episode. When making

a decision at the beginning of the episode, those rewards are heavily discounted, and thus less

important.

Consider now the following experiment: the agent travels in a straight line, and has to reach

x = d while moving at a constant velocity v. The reward is discounted exponentially with a

discount factor γ. In Figure 4.3, we show the discounted reward for some values of d and γ. The

global optimum for a typical discount factor around 0.99 is v = 0, which corresponds to the agent

not moving at all. Depending on the exact values, the optimal value may be anywhere between 0

and
√

es
ew

, which is a significant problem if our goal is training an agent whose optimal velocity is

exactly
√

es
ew

.

The fact that discounting changes the optimal policy is not necessarily unexpected. Naik et al.

[118] show that using discounted rewards when training RL agents may change the optimal policy.

In many practical problems, this is not a big concern, and the discount factor is treated as yet

another hyperparameter. In this case, however, the discount factor directly impacts the properties

of the environment.

Possible solutions

There are various ways to tackle the problems described above, but it is important to note that

both of them have to be solved together. In order to avoid the local optimum of standing still,

we could employ a curriculum-based approach, where the agents initially learn to navigate a short

distance without any obstacle. As the training progresses, the distance and the number of agents

can be increased, with the hope that the agents will not stop moving.

To fix the issue with the global optimum, the obvious solution is not using any reward dis-

counting. In practice, however, this turns out to be much more unstable and difficult to train.

Alternatively, a different non-exponential discounting method could be employed, so that the vari-

ance of the gradient estimation is low enough for efficient training, but the optimal velocity remains

correct.

Both of these solutions add a non-negligible amount of complexity to the learning algorithm.

While in certain situations that might be acceptable, note that all these issues stem from the

simple scenario of a single agent navigating to a goal in an energy-efficient manner. With more

complicated applications, the complexity is likely to become even higher, e.g. via a curriculum

designed for a different objective.

To avoid the compounding complexity, we instead propose changing the reward function. Ide-

ally, it should remain similar to the energy usage so that the emergent behavior is still energy-

efficient. It should also tackle both of the aforementioned issues – that is, the reward for moving

towards the goal should be higher than for standing still, and the optimal velocity should be

invariant under temporal discounting.

4.3.2 Energy-based potential

Adding a guiding potential to the reward function is a common technique of making sparse rewards

more dense. Ng et al. [119] show that adding a reward of the form R(s, a, s′) = γΦ(s′) − Φ(s)

does not change the optimal policy for the γ-discounted rewards. Note that this assumes that the

discounted reward is the true objective of the RL task. This is not true in the case of navigation, as

80

we generally want the global energy usage to be optimal. Nevertheless, it can serve as inspiration

for designing an analogous guiding term.

In the context of human navigation, there is a simple heuristic that we can use as a guiding

potential – the distance from the goal. Consider the following reward function:

r(v) = −es∆t− ewv
2∆t+ c̃pv · ĝ (4.11)

where ĝ is a unit vector pointing from the agent to the goal. Note that the potential term v · ĝ is

equal to the change in the distance between the agent and its goal in two consecutive timesteps.

This induces a total discounted reward of:

Rγ =

∫ T

0

dt(et ln γ(−es∆t− ewv
2∆t+ c̃pv · ĝ)) (4.12)

To obtain a bound on the value of cp, we set the condition that when moving directly towards

the goal, R(v∗) > R(0), i.e. it is better to move towards the goal than stand still. This implies

that c̃p >
√
esew. For simplicity of further analysis, we define cp =

c̃p√
esew

.

4.3.3 Discounting invariance

With a simple simulation, it is clear that there is a nontrivial interaction between the values of the

discount factor γ, the coefficient cp, and the optimal velocity vγ .

Consider the discounted sum of rewards defined in Equation 4.11, with a simple policy of

moving towards the goal with a speed v. With a continuous model of the problem, we can define

the discounted sum of rewards as:

Rγ =

∫ T

0

et ln γ
(
−es − ewv

2 + cp
√
esewv

)
dt

=
1 − γ

d
v

− ln γ

(
−ewv2 + cp

√
esew − es

)
(4.13)

We differentiate this expression w.r.t. v to obtain an expression for the optimal velocity, and

interpret it as an implicit function whose roots correspond to the optimal velocity with a given

discount factor γ:

F (v, γ) =
(−2ewv + c̃p)

(
1 − γ

d
v

)
− ln γ

−
(
−ewv2 + c̃pv − es

)
γ

d
v d

v2
= 0 (4.14)

Solving this analytically for v is difficult. Instead, we consider the implicit derivative:

dv

dγ
= −dF

dγ
/
dF

dv
(4.15)

While the resulting expression is highly complex, it is solvable for cp analytically, yielding the

result:

dv

dγ
= 0 ⇐⇒ cp = 2 (4.16)

This means that using the reward from Equation 4.11 with c̃p = 2
√
esew, the optimal velocity

is independent of the discount factor. Note that if we consider non-exponential discounting as a

81

weighted sum of exponential discountings, this conclusion extends to other discounting methods,

enabling the application of methods like hyperbolic discounting [36] or arbitrary non-exponential

discounting [86].

4.3.4 Non-finishing penalty

When measuring the energy usage as a reward function, or even as a metric, there is another

consideration that stems from the RL setting – the time limit. While theoretically an agent could

infinitely explore until they reach the goal, this is impractical. Instead, RL algorithms typically

set a maximum number of timesteps allowed in an episode. After this limit passes, the episode

terminates, regardless of the state that the agent is in.

In principle, the value of the time limit should not matter as long as it is sufficient to reach

the goal. However, the structure of the energy-based reward (Equations 4.9 and 4.10) makes it

potentially impactful. Let T be the time limit in seconds, d the total distance from the goal. Moving

in a straight line at the optimal velocity v∗, the time needed to reach the goal is T ∗ = d
v∗ =

√
ew
es
d,

and the energy used in this process is 2
√
esewd. If this energy is greater than that of standing still

until the end of the episode esT , then the optimal policy according to the metric may indeed be

simply standing still.

To prevent this, one option is simply setting the time limit so that T > 2 d
v∗ , in which case

moving at the optimal velocity will result in a lower energy usage than standing still until the end

of the episode. This corresponds to an episode length more than twice as long as it would take the

agent to reach the goal moving at optimal velocity. A significant drawback of this approach is its

inefficiency, as the duration of each episode is significantly extended, which increases the amount

of time necessary to collect experience for training. Furthermore, complex scenarios with many

agents may extend the optimal trajectories in ways that are difficult to predict before training the

agents.

Instead we propose two variants of a heuristic that is added as an additional penalty at the end

of the episode if a given agent has not reached its goal. In the first variant, we use the optimal

heuristic – if the agent is at a distance d from its goal, it incurs a penalty of 2
√
esewd, which

corresponds to the energy cost it would take to reach the goal moving at the optimal speed in a

straight line. In the second variant, instead of using the optimal speed, we use the average speed

towards the goal across the agent’s trajectory to estimate the remaining energy cost.

Both of these variants have their flaws. Using the optimal heuristic, in certain cases it may be

beneficial for agents to only move part of the way, and then stop when they encounter a more dense

situation, which requires more energy to navigate. While the average heuristic avoids this issue by

directly tying the final penalty to the agent’s past performance, the estimated velocity has to be

capped at a minimum value (in our experiments: 0.1 m/s). This avoids issues where the agent has

made very little progress towards the goal (which leads to very high penalties, destabilizing the

training), or even made negative progress by moving farther from the goal, leading to a negative

energy cost and a positive final reward.

4.3.5 Alternative approaches

In existing literature, most approaches to crowd simulation via RL disregard the problems of energy

efficiency, and of encouraging agents to prefer an intermediate velocity throughout their motion.

The most common approach to obtain motion with an given velocity v∗ is simply setting v∗ as

82

the maximum in the environment dynamics [106, 156, 185, 63]. This is then combined with a

guiding potential and a one-time reward for reaching the goal, and due to the incentive structure

of the discounted utility paradigm common in RL, this leads to the agents mostly moving at the

“optimal” (i.e. maximum) speed. The downside of this approach is that agents are unable to move

faster than that predefined limit, in contrast with humans, who tend to easily walk, when needed,

a little slower or faster than their optimal comfortable speed.

Other works [93, 186, 87] include a velocity-dependent reward term that incentivizes moving

at a specific speed which is below the highest allowed speed. Here we analyze and compare each

of those approaches.

Lee et al. [93] use a function they call FLOOD, defined as follows:

FLOOD(v, vmin, vmav) =

=|min(v − vmin, 0)| + |max(v − vmax, 0)| (4.17)

where vmin, vmax define the range of comfortable speed. When applied to the linear velocity, this

term disincentivizes velocities outside of the preferred range. While this structure is not directly

connected with energy optimization, it serves a similar purpose of controlling the movement speed.

A similar structure was used by Xu and Karamouzas [186]. In their reward function, they use

a velocity regularization term:

r(v) = exp (σv||v − v∗||) (4.18)

where σv is a parameter, and v∗ is a vector pointing towards the goal, whose magnitude is equal

to the optimal velocity. In our energy optimization framework, it is v∗ = v∗ĝ =
√
es/ewĝ.

Consider the term within the exponent ||v − v∗|| = ||v − v∗ĝ||, and take its square. Inter-

preting this as a scalar product, we have (v − v∗ĝ) · (v − v∗ĝ). When we multiply the terms,

substitute v∗ =
√
es/ew and use the fact that ||ĝ|| = 1, we get v2 − 2

√
es/ewv · ĝ + es

ew
=

1
ew

(
es + ewv

2 − 2
√
esewv · ĝ

)
. This happens to be proportional to the discounting-invariant en-

ergy usage with potential. Note, however, that the final reward used by Xu and Karamouzas [186]

applies additional operations to this value (square root and exponent).

Kwiatkowski et al. [87] use an explicit potential term, and a speed similarity term cv|v − v∗|ce

which does not take into account the direction of the movement. With the exponent ce = 2, this

expands to c̃pv · ĝ − v2 + 2
√

es
ew
v − es

ew
, which is equal to the energy usage with potential, but

with an additional positive term proportional to the agent’s speed. This results in a bicycle-like

behavior where an agent prefers to artificially extend its trajectory while maintaining its optimal

speed, instead of simply slowing down.

4.4 Reward evaluation

In this section, we empirically evaluate our proposed reward structure, and compare it to previously

proposed formulations. We also perform an ablation on various parts of the reward function to

investigate their importance and impact on the final results.

4.4.1 Experimental setup

We performed the experimental evaluation on five crowd scenarios:

83

1. Circle – agents start at the perimeter of a circle, and must reach the antipodal point of the

circle. We apply noise to both the start and goal positions, and add stationary obstacles in

the middle of the circle.

2. Corridor – agents start at two ends of a corridor and must reach the opposite end.

3. Crossing – agents start at southern and western ends of perpendicularly crossed corridors,

and must reach the northern and eastern ends, respectively.

4. Choke – agents must pass from west to east through a narrow opening in a wall.

5. Car – agents must wait for a moving obstacle to open a passage to the goal.

In each scenario, all agents are given a time limit of 200 time-steps, each lasting 0.1 s. Each

agent is removed from the simulation once it touches its goal. Following the classification by

Kwiatkowski et al. [87], we use Egocentric observations with Polar Acceleration dynamics. Each

agent has randomly sampled parameters of es, ew as defined in Section 4.2. These values are

included in the observation, and used to compute the individual reward of each agent.

The main metric we use for evaluation is Energy+, defined as energy usage with the acceleration

correction (Equation 4.8), plus the non-finishing penalty using the average heuristic (Section 4.3.4).

The penalty is meant to additionally penalize agents which do not reach their goals in time, to

ensure that agents cannot hack the reward function by stopping in the middle of the trajectory.

4.4.2 Reward function structure

Throughout the various reward functions we evaluate in this work, we use the following components:

1. Basal energy usage rb = −es

2. Velocity-based energy usage rv = −ewv2

3. Dynamics-based energy usage rd = −|v · a + ewv0 · v|

4. Guiding potential rp = 2
√
esewv · ĝ

5. Preferred speed matching rs = |v − v∗|ce

6. Speeding penalty rz = max(v − v∗, 0)ce

7. Exponential velocity matching rm = exp(σv||v − v∗||)

8. Final non-finishing penalty using the optimal speed heuristic (Section 4.3.4) ro

9. Final non-finishing penalty using the average speed heuristic (Section 4.3.4) ra

10. One-time goal-reaching reward rg

11. Constant collision penalty for each frame when an agent collides with another agent or an

obstacle rc

A complete reward function is a weighted sum of a subset of these terms. For terms (1)-(4)

and (8)-(9), their coefficients are equal to 1 due to their physics-based formulation. Terms (1)-(3)

and (5)-(7) are also multiplied by the duration of the timestep in the simulation.

We primarily focus on evaluating the following reward functions. Note that all of these variants

include components (10) and (11) (goal-reaching and collision penalty, respectively)

84

(a) Base curriculum – a curriculum which initially has components (4), (6) (with ce = 2), and

after 200 training steps, switches to (1), (3), (4), (9)

(b) Base curriculum (no acceleration) – like (a), but using component (2) instead of (3)

(c) Base curriculum (no heuristic) – like (a), but without component (9)

(d) Base curriculum (optimal heuristic) – like (a), but using component (8) instead of (9)

(e) Energy (acceleration) – components (1), (3), (4)

(f) Energy (no acceleration) – components (1), (2), (4)

(g) Energy (no potential) – components (1), (2)

(h) Speed matching – components (4), (5), based on Kwiatkowski et al. [87]

(i) Speeding penalty – components (4), (6), based on Lee et al. [93]

(j) Exponential velocity matching – component (7), based on Xu and Karamouzas [186]

We trained agents using each of these reward functions, and summarize the results in Section 4.5.

Furthermore, to investigate the importance of the potential term, we also evaluated the following

reward functions:

(A) Base curriculum – same as reward (a), serving as a baseline

(B) No potential – same as (A), but without component (4) (potential)

(C) No potential and final penalty – same as (B), but also without component (9) (non-

finishing penalty)

(D) No potential and goal – same as (B), but also without component (10)

(E) No potential and goal, optimal heuristic – same as (D), but with component (10)

instead of (9)

(F) Pure energy – same as (C), but also without component (10) (goal). The second phase of

the curriculum only uses components (1) and (3).

(G) Pure energy, no discounting – same as (F), but the discount factor is set to γ = 1

throughout the training

We describe the results of these experiments in Section 4.5.1.

4.5 Results

While the details differ based on the scenario, in all of them except for the Car scenario, the

best-performing reward is a curriculum leading to energy optimization. In the Car scenario, the

best-performing reward in terms of the Energy+ metric is directly optimizing energy from the

beginning.

The benefit of the curriculum becomes apparent when we consider the progression of the train-

ing. We show the success rates in the Circle scenario as a function of the training steps in Figure 4.4.

85

Table 4.1: Mean value of the Energy+ metric after training in a given scenario, using a given
reward function. Each value is based on 8 independent training runs. Lower is better.

Circle Crossing Corridor Car Choke

Base curriculum 58.2 ± 0.54 66.38 ± 1.39 77.56 ± 6.19 110.95 ± 3.99 94.97 ± 4.03

Base curriculum
(no acceleration)

61.62 ± 0.82 72.56 ± 1.14 85.26 ± 6.07 112.81 ± 2.51 112.18 ± 5.49

Base curriculum
(no heuristic)

59.18 ± 0.51 65.81 ± 1.03 63.29 ± 0.32 95.63 ± 8.31 114.78 ± 12.55

Base curriculum
(optimal heuristic)

59.17 ± 1.01 67.56 ± 2.12 69.34 ± 2.1 103.76 ± 6.57 94.53 ± 7.99

Energy
(acceleration)

74.59 ± 2.48 73.55 ± 3.36 96.19 ± 9.02 85.05 ± 9.36 105.58 ± 9.09

Energy
(no acceleration)

67.1 ± 1.97 81.32 ± 3.26 102.75 ± 5.08 108.32 ± 1.26 106.39 ± 5.43

Energy
(no potential)

459.53 ± 53.16 454.01 ± 5.29 450.65 ± 5.06 463.26 ± 1.44 460.28 ± 1.0

Speed matching 60.13 ± 0.71 81.04 ± 5.66 68.35 ± 1.7 126.28 ± 2.03 276.55 ± 14.99

Speeding penalty 58.55 ± 0.87 88.47 ± 4.42 98.71 ± 6.06 119.72 ± 1.27 130.03 ± 5.66

Exponential
velocity matching

63.5 ± 1.73 77.18 ± 4.33 85.33 ± 4.91 107.66 ± 0.7 129.9 ± 9.4

0 200 400 600 800 1000
Training iteration

0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

 ra
te

Base curriculum
Energy (no acceleration)
Energy (acceleration)

Figure 4.4: Success rates of agents trained with certain reward functions in the Circle scenario.

86

0 200 400 600 800 1000
Training iteration

50

100

150

200

250

300

350

400

E
ne

rg
y+

Base curriculum
No potential
No potential and final
No potential and goal
No potential and goal, opt. heuristic
Pure energy
Pure energy, no discounting

Figure 4.5: Energy+ metric as a function of training progress with various reward functions. To
maintain the performance from the first stage of the training, it is necessary to either use a potential
term, or set the discount factor to γ = 1. Agents without a potential or a final heuristic converge
to standing still, while other variants’ performance significantly degrades.

This scenario has a difficult coordination task embedded in it – when agents travel through the

central part of the scene, they must avoid many other agents moving in all directions to prevent

collisions. Each collision may lead to additional energy usage in order to resume movement, which

effectively increases the collision penalty. Because of this, agents learn the navigation task much

more slowly. Conversely, using a simple speeding penalty for the initial part of the training al-

lows the agents to quickly reach a high success rate, which is then maintained after the reward is

switched to energy optimization.

On the other hand, in the Car scenario, the best-performing variant is direct energy optimiza-

tion. This is because agents trained with speeding penalty (as opposed to energy minimization)

initially converge to attempting to quickly go in front of the car, passing before it hits them. In

contrast, agents trained to minimize energy usage simply wait for the obstacle to pass, or start

moving behind it. It is difficult to progressively switch from the former to the latter behavior, so

the curriculum fails to produce efficient behavior.

4.5.1 Is potential necessary?

In Section 4.3.1, we provide theoretical justification for why simply optimizing energy is likely to

fail. The data in Table 4.1 confirms at least the local optimum argument – directly optimizing

the energy usage consistently leads to the worst performance, corresponding to standing still. To

empirically validate our global optimum argument, we conducted additional experiments on the

Circle scenario, using reward functions (A)-(G).

We show the results in terms of the Energy+ values in Figure 4.5. The no potential variant

maintains a reasonable performance, but its energy efficiency drops compared to the baseline. Both

variants without the final non-finishing penalty (with or without the goal reward – (C) and (F)

respectively) rapidly deteriorate to a policy which stays still for the entire duration of the episode.

The variants that retain some of their performance are (B) and (D), i.e. ones which still use

the average heuristic penalty for not reaching the goal, however their success rate is significantly

lower than the baseline. Using the optimal heuristic (E) instead of the average heuristic degrades

87

0 1 2 3 4 5 6
Acceleration

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

1e6

No acceleration correction
Acceleration correction

Figure 4.6: Histogram of accelerations in the Circle scenario, trained with and without the
acceleration-based term in the reward function.

performance significantly, leading agents to slowly approach the goal, abusing the generous reward

they receive at the end of the episode. Finally, using pure energy optimization in a curriculum

without a discount factor retains the same performance as the base curriculum.

This confirms that absent of additional goals, with a discount factor of γ = 0.99, using energy

as a reward without a guiding potential fails to converge to a valid policy, even when initialized

with a goal-seeking policy trained with a different reward function. This may be mitigated by

including a guiding potential, which in some cases enables effective end-to-end training using that

reward function. Alternatively, if the training converges without discounting, i.e. with γ = 1, pure

energy may also be a valid approach as a second (or later) stage of a curriculum. This is consistent

with the analysis by Naik et al. [118], who describe theoretical problems with the discounted utility

paradigm.

4.5.2 Impact of acceleration

In order to evaluate the impact of the acceleration correction to the energy estimation introduced

in Section 4.2.1, we compare agents trained with the base curriculum, with and without the accel-

eration correction. We show the histogram of accelerations, collected across 8 independent training

runs in the Circle scenario, in Figure 4.6.

The average magnitude of the acceleration across the trajectories is 0.339 m/s2 with the accel-

eration correction in the energy estimation, and 0.679 m/s2 without it. This result is statistically

significant with p < 0.01 using the two-sample Kolmogorov-Smirnov test. This shows that includ-

ing the acceleration in energy estimation successfully leads to smoother behavior. At the same

time, the energy usage without the acceleration correction remains similar for both variants –

49.77 ± 1.077 and 50.47 ± 1.284 respectively, indicating that the reduced acceleration does not

come at the cost of otherwise less efficient movement.

4.6 Conclusions

In this work, we introduce two contributions: a new, more accurate way to estimate energy usage

in the context of crowd simulation, and a novel reward function formulation for training agents

88

navigating in an energy-efficient manner. We demonstrate a successful curriculum learning ap-

proach, where an initial speeding penalty is replaced by a simpler energy optimization formulation

in later training stages. This method allows the agents to learn basic navigation first, and then

focus on efficiency.

Our experiments on several crowd navigation scenarios show that training using an energy-based

reward consistently outperforms other reward functions used in prior work. A critical component of

this reward structure is the guiding potential, which ensures that agents navigate towards the goal,

and do not simply stay still to minimize the energy usage. We empirically verify this conclusion

through additional experiments that exclude this term from the reward function.

Interestingly, in some scenarios, such as the Car scenario, a curriculum approach does not

provide any benefits, and agents perform optimally when trained directly with the energy opti-

mization reward. This can be attributed to the specific nature of this scenario, where the initial

policy learned by the agents with a speeding penalty makes them rush in front of the moving ob-

stacle, a strategy that contrasts with the more efficient wait-and-follow behavior learned through

energy optimization. This highlights the potential need for a more scenario-specific reward for-

mulation or a flexible curriculum training approach that can adjust itself based on the scenario’s

complexity and nature.

Furthermore, our analysis of discount factor effects on training outcomes with a pure energy

reward function aligns with the theoretical discussions raised by Naik et al. [118]. It shows that

if the training is conducted without discounting, using energy as a reward without a guiding po-

tential can converge to a valid policy when initialized with a goal-seeking policy trained with a

different reward function. This discovery invites future research to explore the utility of differ-

ent discounting paradigms in such energy optimization tasks and potentially other reinforcement

learning applications.

While the current results are promising, several directions remain for future work. The energy

estimation for motion with acceleration could be made more accurate by considering the agent’s

physical model more closely. Additionally, the potential function could be replaced with a more

sophisticated heuristic that considers the actual shortest path to the goal, taking into account other

agents and obstacles. Another possible direction could be developing an adaptive curriculum that

considers the nature of the scenario or the learning progress of the agent. Finally, integrating this

energy-efficient approach with social norms and considering more realistic crowd behaviors could

lead to generating more realistic behaviors with RL.

Moving on to the final part of this thesis, we think back to one of the problems with using

energy as a reward function – the global optimum problem, related to the discount factor. A

potential solution would be a different, non-exponential discounting method; however, there is

no general method that allows us to use non-exponential discounting with modern on-policy RL

algorithms like PPO. In the following chapter, we aim to close that gap.

89

90

Chapter 5

Non-exponential reward

discounting

Once a reward function is chosen, it is up to the RL algorithm to optimize it. That, however,

does not mean that we are done. While a superintelligent AGI would, without a doubt, manage

to design an agent perfectly optimizing, current RL algorithms are unfortunately not at that level

yet (or fortunately – depending on one’s views on existential risk due to AI).

To obtain good results via RL training, it is important to stay cognizant of all the finer details

of the algorithms in question. In particular, RL algorithms typically follow the discounted utility

paradigm, where rewards are considered less important, the further away in the future they are.

As we showed in Chapter 4, the usual exponential discounting may lead to undesirable outcomes

via global optima in the direct optimization objective.

As a potential way to address this issue, in this chapter, we explore non-exponential discounting

mechanisms and introduce a practical way to use arbitrary discounting with modern RL algorithms.

We also introduce a simple parametrization of certain non-exponential discounting to enable future

theoretical and empirical work on this topic.

5.1 Introduction

Building a Reinforcement Learning (RL) algorithm for time-dependent problems requires specifying

a discounting mechanism that defines how important the future is relative to the present. Typically,

this is done by setting a discount rate γ ∈ [0, 1] and decaying the future rewards exponentially by

a factor γt [14]. This induces a characteristic planning horizon, which should match the properties

of the environment. In practice, γ is one of the most important hyper-parameters to tune. Small

deviations may massively decrease the algorithm’s performance, which makes training an RL agent

less robust, and more difficult for users to perform a hyper-parameter search with new algorithms

and environments.

The choice of a discounting is an example of the bias-variance trade-off. If the discount factor is

too low (or correspondingly, the general discounting decreases too rapidly), the value estimate is too

biased, and in an extreme case, the agent cannot plan sufficiently far into the future. Conversely,

with a discount factor too high, the variance of the value estimation is very large due to the high

impact of the distant future, often irrelevant to the decision at hand.

91

In the literature, a variety of discounting mechanisms have been proposed, from the widely

used exponential discounting [155] to hyperbolic discounting, first introduced by psychologists

to describe human behavior [3], which we show to be two special cases of our Beta-weighted

discounting. Other options include fixed-horizon discounting [89], where all rewards beyond a

certain horizon are ignored, or not using any discounting [118]. Any discounting method can also

be truncated by setting it to zero for all timesteps after a certain point.

The Generalized Advantage Estimation [145] (GAE) algorithm, which can be seen as an exten-

sion of the TD(λ) algorithm, is widely used in training RL agents, but it can only use exponential

discounting. This limits the behaviors that we can observe in trained agents with respect to balanc-

ing rewards at multiple timescales. To enable using arbitrary discounting methods, we introduce

Universal General Advantage Estimation (UGAE) – a vectorized formulation of GAE that accepts

any arbitrary discount vectors. We also define a novel discounting method, named Beta-weighted

discounting, which is obtained by continuously weighing all exponential discount factors accord-

ing to a Beta distribution. We show that this method captures both exponential and hyperbolic

discounting by properly setting its parameters.

Moreover, we offer an analysis of several exponential and non-exponential discounting methods

and their properties. While these methods (except for Beta-weighted discounting) are not new,

they can be used in practical RL experiments thanks to UGAE; therefore, it is worthwhile to

understand their differences.

As pointed out by Pitis [130], exponential discounting with a constant discount factor fails

to model all possible preferences that one may have. While our beta-weighted discounting only

introduces a time-dependent discount factor and thus does not solve this problem in its entirety,

it enables using more complex discounting mechanisms. Furthermore, our UGAE can serve as a

step towards a practical implementation of state-action-dependent discounting.

Finally, we experimentally evaluate the performance of UGAE on a set of RL environments,

and compare it to the unbiased Monte Carlo advantage estimation method. We show that UGAE

can match or surpass the performance of exponential discounting, without a noticeable increase in

computation time. Since it can be seamlessly used with existing codebases (usually by replacing

one function), it offers a good alternative to the conventional approach, and enables a large range

of future empirical research into the properties of non-exponential discounting.

While currently research into non-exponential discounting is largely limited to toy problems

and simple tabular algorithms, our UGAE makes it possible to use arbitrary discounting with

state-of-the-art algorithms. It can be used to solve a wide range of problems, including ones

with continuous observation and action spaces, and multiagent scenarios, by combining it with

algorithms like PPO [144].

In summary, our contributions are twofold: we introduce UGAE, a modification of GAE that

accepts arbitrary discounting methods, offering greater flexibility in the choice of a discounting; and

we introduce a novel discounting method, named Beta-weighted discounting, which is a practical

way of using non-exponential discounting.

5.2 UGAE – Universal Generalized Advantage Estimation

In this section, we introduce the main contribution of this paper, UGAE, which is a way of

combining the GAE algorithm [145] with non-exponential discounting methods. Then, we define

several discounting methods that will be further explored in this work.

92

Problem Setting We formulate the RL problem as a Markov Decision Process (MDP) [14]. An

MDP is defined as a tuple M = (S,A, P,R, µ), where S is the set of states, A is the set of actions,

P : S×A→ ∆S is the transition function, R : S×A→ R is the reward function and µ ∈ ∆S is the

initial state distribution. Note that ∆X represents the set of probability distributions on a given

set X. An agent is characterized by a stochastic policy π : S → ∆A, at each step t sampling an

action at ∼ π(st), observing the environment’s new state st+1 ∼ P (st, at), and receiving a reward

rt = R(st, at). Over time, the agent collects a trajectory τ = ⟨s0, a0, r0, s1, a1, r1, . . . ⟩, which may

be finite (episodic tasks) or infinite (continuing tasks).

The typical goal of an RL agent is maximizing the total reward
∑T

t=0 rt, where T is the duration

of the episode (potentially infinite). A commonly used direct objective for the agent to optimize

is the total discounted reward
∑T

t=0 γ
trt under a given discount factor γ [160]. Using a discount

factor can serve as a regularizer for the agent [8], and is needed for continuing tasks (T = ∞) to

ensure that the total reward remains finite.

In this work, we consider a more general scenario that allows non-exponential discounting

mechanisms defined by a function Γ(·) : N → [0, 1]. The optimization objective is then expressed

as RΓ =
∑∞

t=0 Γ(t)rt.

5.2.1 UGAE

The original derivation of GAE relies on the assumption that the rewards are discounted expo-

nentially. While the main idea remains valid, the transformations that follow and the resulting

implementation cannot be used with a different discounting scheme.

Recall that GAE considers multiple k-step advantages, each defined as:

Â
(k)
t = −V (st) +

k−1∑
l=0

γlrt+l + γkV (st+k). (5.1)

Given a weighing parameter λ, the GAE advantage is then:

Â
GAE(γ,λ)
t := (1 − λ)(Â

(1)
t + λÂ

(2)
t + . . .) (5.2)

=

∞∑
l=0

(γλ)lδVt+l

where δVt = rt + γV (st+1) − V (st). While this formulation makes it possible to compute all the

advantages in a dataset with an efficient, single-pass algorithm, it cannot be used with a general

discounting method. In particular, δVt cannot be used as its value depends on which timestep’s

advantage we are computing.

To tackle this, we propose an alternative expression using an arbitrary discount vector Γ(t). To

this end, we redefine the k-step advantage using this concept, as a replacement for Equation 5.1:

Ã
(k)
t = −V (st) +

k−1∑
l=0

Γ(l)rt+l + Γ(k)V (st+k) (5.3)

We then expand it to obtain the equivalent to Equation 5.2:

93

Ã
UGAE(Γ,λ)
t := (1 − λ)(Ã

(1)
t + λÃ

(2)
t + . . .) (5.4)

= −V (st) +

∞∑
l=0

λlΓ(l)rt+l

+ (1 − λ)

∞∑
l=0

Γ(l+1)λlV (st+l+1)

Note that the second and third terms are both sums of products, and can therefore be interpreted as

scalar products of appropriate vectors. By defining rrrt = [rt+i]i∈N, VVV t = [V (st+i)]i∈N, ΓΓΓ = [Γ(i)]i∈N,

ΓΓΓ′ = [Γ(i+1)]i∈N, λλλ = [λi]i∈N, we rewrite Equation 5.4 in a vectorized form in Equation 5.5. We

use the notation that xxx⊙yyy represents the Hadamard (element-wise) product, and xxx ·yyy – the scalar

product.

Theorem 1. UGAE: GAE with arbitrary discounting

Consider rrrt,VVV t,ΓΓΓ,ΓΓΓ
′,λλλ, λ defined as above. We can compute GAE with arbitrary discounting

as:

Ã
UGAE(Γ,λ)
t := (5.5)

:= −V (st) + (λλλ⊙ΓΓΓ) · rrrt + (1 − λ)(λλλ⊙ΓΓΓ′) · VVV t+1

If Γ(t) = γt, this is equivalent to the standard GAE advantage. Proof is in the supplemental

material.

Discussion. Theorem 1 gives a vectorized formulation of GAE. This makes it possible to

use GAE with arbitrary discounting methods with little computational overhead, by leveraging

optimized vector computations.

Note that while the complexity of exponential GAE computation for an entire episode is O(T)

where T is the episode length, the vectorized formulation increases it to O(T 2) due to the need of

multiplying large vectors. Fortunately, truncating the future rewards is trivial using the vectorized

formulation, and that can be used through truncating the discounting horizon, by setting a maxi-

mum length L of the vectors in Theorem 1. The complexity in that case is O(LT), so again linear

in T as long as L stays constant. In practice, as we show in this paper, the computational cost is

not of significant concern, and the truncation is not necessary, as the asymptotic complexity only

becomes noticeable with unusually long episode lengths.

5.2.2 Added estimation bias

An important aspect of our method is the additional bias it introduces to the value estimation. To

compute a k-step advantage, we must evaluate the tail of the reward sequence using the discounting

itself (the V (st+k) term in Equation 5.1). This is impossible with any non-exponential discounting,

as the property Γ(k+t) = Γ(k)Γ(t) implies Γ(·) being an exponential function. Seeing as we are

performing an estimation of the value of those last steps, this results in an increase in the estimation

bias compared to Monte Carlo estimation.

This clearly ties into the general bias-variance trade-off when using GAE or TD-lambda esti-

mation. In its original form, it performs interpolation between high-variance (Monte Carlo) and

high-bias (TD) estimates for exponential discounting. In the case of non-exponential discounting,

94

using UGAE as opposed to Monte Carlo estimates has the same effect of an increase in bias, but

decreasing the variance in return.

The difference between the non-exponential discounting and its tail contributes to an additional

increase of bias beyond that caused by using GAE, but we show that this bias remains finite in

the infinite time horizon for summable discountings (including our βGAE as well as any truncated

discounting).

Theorem 2. UGAE added bias

Consider an arbitrary summable discounting Γ(t). The additional bias, defined as the discrep-

ancy between the UGAE and Monte Carlo value estimations, is finite in the infinite time horizon.

Proof is in the supplemental material.

In practice, as we show in our experiments, the decreased variance enabled by UGAE effectively

counteracts the added bias, resulting in an overall better performance over Monte Carlo estimation.

5.2.3 Non-exponential discounting

Beta-weighted Discounting is described in the following section. Exponential and hyperbolic

discountings are equivalent to Beta-weighted discounting with η=0 and η=1, respectively. The

former is given by Γ(t)=µt with µ∈[0, 1], and the latter by Γ(t)= 1
1+kt=

1
1+ 1−µ

µ t
parametrized by

k∈[0,∞) or µ∈(0, 1].

No Discounting implies that the discount vector takes the form ∀t∈NΓ(t)=1. This is non-

summable, but it is trivial to compute any partial sums to estimate the importance of future

rewards or the variance. The effective planning horizon depends on the episode length T , and is

equal to (1 − 1
e)T .

Fixed-Horizon Discounting Here, there is a single parameter Tmax which defines how many

future rewards are considered with a constant weight. The discount vector is then Γ(t) = 1t<Tmax ,

and the planning horizon, according to our definition, is (1 − 1
e)Tmax.

Truncated Discounting All discounting methods can be truncated by adding an additional

parameter Tmax, and setting the discount vector to 0 for all timesteps t > Tmax. Truncating a

discounting decreases the importance of future rewards and the effective planning horizon, but also

decreases the variance of the total rewards.

5.3 Beta-weighted discounting

In this section, we present our second contribution, i.e. Beta-weighted discounting. It uses the

Beta distribution as weights for all values of γ∈[0, 1]. We use their expected value as the effective

discount factors Γ(t), which we show to be equal to the distribution’s raw moments.

5.3.1 Beta-weighted discounting

As a simple illustrative example, let us use two discount factors γ1, γ2 with weights p and (1 − p)

respectively, where p ∈ [0, 1]. This can be treated as a multiple-reward problem [147] where the

total reward is a weighted sum of individual rewards Rγ =
∑∞

t=0 γ
trt. Therefore, we have:

95

R(γ1,γ2) = p
∑

γt1rt + (1 − p)
∑

γt2rt (5.6)

=
∑

rt(pγ
t
1 + (1 − p)γt2)

We extend this reasoning to any countable number of exponential discount factors with arbitrary

weights, that sum up to 1. Taking this to the continuous limit, we also consider continuous

distributions of discount factors w ∈ ∆([0, 1]), leading to the equation:

Rw =
∑

rt

∫ 1

0

w(γ)γtdt =
∑

rtΓ
(t) (5.7)

An important observation is that as long as supp(w) ⊆ [0, 1], the integral is by definition equal

to the t-th raw moment of the distribution w. Hence, with an appropriately chosen distribution

an analytical expression is obtained for all its moments, and therefore, all the individual discount

factors Γ(t).

We choose the Beta distribution due to the simple analytical formula for its moments, as well

as its relation to other common discounting methods. Its probability density function is defined as

f(x;α, β) ∝ xα−1(1−x)β−1. Note that with β = 1, it is equivalent to the exponential distribution

which induces a hyperbolic discounting. Its moments are known in analytical form [71], which

leads to our proposed discounting mechanism in Theorem 3.

Theorem 3. Beta-weighted discounting

Consider α, β ∈ [0,∞). The following equations hold for the Beta-weighted discount vector

parametrized by α, β. Proof is in the supplementary material.

Γ(t) =

t−1∏
k=0

α+ k

α+ β + k
(5.8)

Γ(t+1) =
α+ t

α+ β + t
Γ(t) (5.9)

5.3.2 Beta distribution properties

Here, we investigate the Beta distribution’s parameter space and consider an alternative parametriza-

tion that eases its tuning. We also analyze important properties of the Beta-weighted discounting

based on those parameters, and compare them to exponential and hyperbolic baselines.

Canonically, the Beta distribution is defined by parameters α, β ∈ (0,∞). It is worth noting

certain special cases and how this approach generalizes other discounting methods. When α, β → ∞
such that its mean µ := α

α+β = const., the beta distribution asymptotically approaches the Dirac

delta distribution δ(x−µ), resulting in the usual exponential discounting Γ(t) = µt. Alternatively,

when β = 1, we get Γ(t)=
∏t−1

k=0
α+k

α+k+1= α
α+t=

1
1+t/α , i.e. hyperbolic discounting.

Mean µ and dispersion η A key property is that we would like the effective discount rate

to be comparable with existing exponential discount factors. To do so, we define a more intuitive

parameter to directly control the distribution’s mean as µ = α
α+β ∈ (0, 1). µ defines the center of

the distribution and should therefore be close to typically used γ values in exponential discounting.

A second intuitive parameter should control the dispersion of the distribution. Depending on

the context, two choices seem natural: β itself, or its inverse η = 1
β . As stated earlier, β can take

any positive real value. By discarding values of β < 1 which correspond to a local maximum of

96

the probability density function around 0, we obtain η ∈ (0, 1]. That way we obtain an easy-to-

interpret discounting strategy. Indeed, as we show in Lemma 4, η → 0 and η = 1 correspond to

exponential discounting, and hyperbolic discounting, respectively, which allows us to finally define

the range of η as [0, 1]. Other values smoothly interpolate between both of these methods, similar

to how GAE interpolates between Monte Carlo and Temporal Difference estimation.

Given the values of µ and η, the original distribution parameters can be recovered as α = µ
η(1−µ)

and β = 1
η . The raw moments parametrized by µ and η are mt =

∏t−1
k=0

µ+kη(1−µ)
1+kη(1−µ) .

Lemma 4. Special cases of Beta-weighted discounting

We explore the relation of Beta-weighted to exponential and hyperbolic discountings. Consider

the Beta-weighted discounting Γ(t) parametrized by µ ∈ (0, 1), η ∈ (0, 1]. The following is true:

• if η → 0, then Γ(t) = µt, i.e. it is equal to exponential discounting

• if η = 1, then Γ(t) = µ
µ+(1−µ)t = 1

1+t/α , i.e. it is equal to hyperbolic discounting

Proof is in the supplemental material.

Discussion. Beta-weighted discounting is controlled by two parameters (u, η), which includes

the classic exponential discounting, but also enables more flexibility in designing agent behaviors .

Lemma 5. Beta-weighted discounting summability

Given the Beta-weighted discount vector Γ(t) =
∏t−1

k=0
α+k

α+β+k , α ∈ [0,∞), β ∈ [0,∞), the

following property holds. Proof is in the supplemental material.

∞∑
t=0

Γ(t) =


α+β−1
β−1 if β > 1

∞ otherwise
(5.10)

Discussion. Lemma 5 describes the conditions under which the Beta-weighted discounting

is summable depending on its parameters. While less critical for episodic tasks, summability of

the discount function is crucial for continuing tasks. Otherwise, the discounted reward can grow

arbitrarily high over time.

5.4 Analysis of non-exponential discounting methods

Here, our goal is to justify the usage, and enable deep understanding of different discounting

methods. To this end, we first analyze some of their main properties: the importance of future

rewards, the variance of the discounted rewards, the effective planning horizon, and the total sum

of the discounting. Then, we compare those properties among the previously described discounting

methods.

Since not all discounting methods are summable (particularly the cases of hyperbolic and no

discounting), we consider the maximum (“infinite”) episode length to be 10000 steps. We focus on

a characteristic time scale of the environment around 100 steps.

5.4.1 Properties of discounting

Importance of future rewards Properly describing the influence of the future under a specific

discounting is challenging. On one hand, individual rewards are typically counted with a smaller

weight, as discount vectors Γ(t) are usually monotonically decreasing. On the other hand, the longer

97

the considered time horizon is, the more timesteps it includes, increasing its overall importance.

Furthermore, a long time horizon (e.g. 100 steps) directly includes a shorter horizon (e.g. 10 steps),

and therefore, the partial sums are not directly comparable. To balance these aspects, we focus on

the importance of the first 100 steps using the following expressions:

Γt2
t1 =

∑t2
t=t1

Γ(t)∑∞
t=0 Γ(t)

(5.11)

Variance of the discounted rewards The overall objective of the RL agent is maximizing

the total (discounted) reward it obtains in the environment. Since both the policy and the envi-

ronment can be stochastic, the total reward will also be subject to some uncertainty. While the

exact rewards, as well as their variances, depend heavily on the exact environment, we make the

simplifying assumption that the instantaneous rewards rt are sampled according to a distribution

D with a constant variance of σ2, e.g. rt ∼ D = N (µ, σ2) with an arbitrary, possibly varying, µ.

We also assume all rewards to be uncorrelated, which leads to the following expression:

Var[
T∑

t=0

Γ(t)rt] =

T∑
t=0

Γ(t)2Var[rt] (5.12)

=

T∑
t=0

Γ(t)2σ2 = σ2
T∑

t=0

Γ(t)2

Equation 5.12 shows that the variance of the total discounted reward is proportional to the

sum of all the squares of discount factors. While in some cases it is easy to obtain analytically,

quite often the expression can be complex and difficult to obtain and analyze; hence, we consider

the numerical values, as well as analytical expressions where applicable.

Effective planning horizon For any discounting Γ(t), our goal is to have a measure of its

effective planning horizon. However, in most cases, we cannot have a clear point beyond which

the rewards do not matter and there is not a unique notion of a time horizon that could be speci-

fied. Thus, to maintain consistency with the standard notion of a time horizon from exponential

discounting, we define the effective time horizon as the timestep Teff after which approximately
1
e (≈ 37%) of the weight of the discounting remains.

Total sum of the discounting Depending on the RL algorithm and the reward normalization

method (if any), the magnitude of the total discounted reward might impact the stability of the

training, as neural networks typically cannot deal with very large numbers. For this reason, we

consider the sum of all rewards under a given discounting.

Consistency It is worth keeping in mind that, as pointed out by Lattimore and Hutter [89],

the only time consistent discounting is the exponential discounting. This means that it is possible

that other methods cause the agent to change its plans over time. While this has the potential to

significantly degrade the performance in some specific environments, that is often not the case in

typical RL tasks, as we show in Section 5.5.

5.4.2 Experimental Analysis

To analyze the properties of different discounting methods, we compute them for a set of relevant

discounting methods and their parameters. The impact of Beta discounting’s η is illustrated in

98

0.0 0.2 0.4 0.6 0.8 1.0
10 2

10 1

100

Im
po

rta
nc

e
of

 fi
rs

t 1
00

 st
ep

s

(a)
0.0 0.2 0.4 0.6 0.8 1.0

100

101

102

103

104

Va
ria

nc
e

(b)
0.0 0.2 0.4 0.6 0.8 1.0

100

101

102

103

Ef
fe

ct
iv

e
ho

riz
on

(c)
0.0 0.2 0.4 0.6 0.8 1.0

100

101

102

103

104

To
ta

l s
um

(d)

(0.9,) (0.97,) (0.99,) (0.999,) (0.25,) (1.0,) (0.99, 500)

Figure 5.1: Different properties of a discounting, as a function of η, with given (µ, Tmax) parameters
listed in the legend. (a) Importance of the near future (b) Variance measure (c) Effective time
horizon (d) Total discounting sum

Figure 5.1(a-d), showing: (a) the importance of first 100 steps Γ100
0 , (b) the variance measure, (c)

the effective time horizon, (d) the total sum of the discounting – full results are in the supplement.

Note that the choice of the discounting is an example of the common bias-variance trade-off. If

the real objective is maximizing the total undiscounted reward, decreasing the weights of future

rewards inevitably biases the algorithm’s value estimation, while simultaneously decreasing its

variance.

Using no discounting, the rewards from the distant future have a dominant contribution to

the total reward estimate since more steps are included. Exponential discounting places more

emphasis on the short term rewards, according to its γ parameter, while simultaneously decreasing

the variance; when γ = 0.99, it effectively disregards the distant future of t > 1000.

In Beta-weighted discounting with η > 0, the future rewards importance, the variance and

the effective time horizon increase with η. If µ is adjusted to make Teff similar to exponential

discounting’s value, the variance decreases significantly, and the balance of different time horizons

shifts towards the future, maintaining some weight on the distant future.

With hyperbolic discounting (Beta-weighted with η = 1) the distant future becomes very

important, and the effective time horizon becomes very large (in fact, infinite in the limit of an

infinitely long episode). To reduce the time horizon to a value close to 100, its µ parameter has

to be very small, near µ = 0.25, putting most of the weight on rewards that are close in time, but

also including the distant rewards unlike any exponential discounting.

The behavior of fixed-horizon discounting is simple – it acts like no discounting, but ig-

nores any rewards beyond Tmax. Truncating another discounting method results in ignoring the

rewards beyond Tmax, and decreasing the variance and the effective time horizon (see supplemental

material).

In summary, by modifying η in Beta-weighted discounting, and Tmax in the truncated scenario,

we can successfully change various aspects of the resulting discounting in a more flexible way than

with exponential discounting. In general, changing the discounting method can bias the agent to

favor certain timescales and focus on maximizing the rewards that occur within them.

5.4.3 Discussion

When η is increased, the importance shifts towards the future (Figure 5.1a), variance (Figure 5.1b)

and the effective horizon (Figure 5.1c) increase. Introducing a truncation (pink line) decreases the

effective horizon and shifts the reward importance towards the near rewards. When truncated at

100 steps, Beta-weighted discounting with η = 0.5 and hyperbolic discounting (η = 1) have very

99

similar properties, indicating their main difference lies in how they deal with the distant future.

This is confirmed by comparing the non-truncated versions, where hyperbolic discounting puts a

very large weight on the distant future, unlike the Beta-weighted discounting.

5.4.4 Why non-exponential discounting?

A natural question that arises during this discussion is – why do we even want to train agents

with non-exponential discounting? As described by Naik et al. [118], optimizing a discounted

reward is not equivalent to optimizing the reward itself. The choice of a discounting method

affects the optimal policy, or even its existence in the first place. While we do not tackle this

problem in this work, we enable larger flexibility in designing the discounting mechanism. This

in turn allows researcher to generate more diverse emergent behaviors through the choice of an

appropriate discounting – in case that exponential discounting leads to undesirable results.

As mentioned earlier, any discounting other than exponential has the potential for inconsistent

behavior. This means that the agent may change its mind on a decision as time passes, without any

additional changes to the situation. While this behavior is admittedly irrational, it is commonly

exhibited by humans [3]. Therefore, it is important to take this into consideration when creating

agents meant to mimic human behavior in applications like video games or social robotics, where

human-likeness is important, and potentially not appropriately reflected in the reward function.

(a) Corridor (b) Crossway

Figure 5.2: Visualizations of the two crowd simulation scenarios used in the experiments. In both
cases, each agent needs to reach the opposite end of their respective route, and is then removed
from the simulation.

5.5 DRL Experiments

In this section, we evaluate our UGAE for training DRL agents with non-exponential discounting,

in both single-agent and multiagent environments. As the baseline, we use non-exponential dis-

counting with regular Monte Carlo (MC) advantage estimation, equivalent to UGAE with λ = 1.

We use Beta-weighted discounting to parametrize the non-exponential discounting with its η value.

We use four test environments to evaluate our discounting method: InvertedDoublePendulum-

v4 and HumanoidStandup-v4 from MuJoCo via Gym [166, 19]; Crossway and Corridor crowd

100

0 250 500 750 1000 1250 1500 1750 2000
Training step

0

2000

4000

6000

8000
M

ea
n

ep
is

od
e

re
w

ar
d =0.8

=0.9
=1

(a) Inverted Double Pendulum, η = 0.8.

0 250 500 750 1000 1250 1500 1750 2000
Training step

40000

60000

80000

100000

120000

140000

M
ea

n
ep

is
od

e
re

w
ar

d =0.95
=1

(b) Humanoid Standup, η = 0.5.

0 200 400 600 800 1000
Training step

200

150

100

50

0

M
ea

n
ep

is
od

e
re

w
ar

d

=0.891
=1

(c) Crowd Crossing, η = 0.8.

0 200 400 600 800 1000
Training step

250

200

150

100

50

0

M
ea

n
ep

is
od

e
re

w
ar

d

=0.891
=1

(d) Crowd Corridor, η = 0.5.

Figure 5.3: Training curves in DRL experiments using non-exponential discounting. All curves are
averaged across 8 independent training runs. Shading indicates the standard error of the mean.
In all experiments, using λ values that were tuned for optimality with exponential discounting,
significantly outperform the MC baseline (λ = 1). This indicates that UGAE enables translating
the benefits of GAE to non-exponential discounting.

simulation scenarios with 50 homogeneous agents each, introduced by Kwiatkowski et al. [87].

The crowd scenarios are displayed in Figure 5.2. We chose these environments because their

optimal λ values with exponential GAE are relatively far from λ = 1 based on prior work. In

environments where GAE does not provide benefit over MC estimation, we similarly do not expect

an improvement with non-exponential discounting.

Inverted Double Pendulum and Humanoid Standup are both skeletal control tasks with low-

and high-dimensional controls, respectively. The former has an 11-dimensional observation space

and 1-dimensional action space, whereas the latter has a 376-dimensional observation space, and

a 17-dimensional action space. The crowd simulation scenarios use a hybrid perception model

combining raycasting to perceive walls, and direct agent perception for neighboring agents for

a total of 177-dimensional vector observation and 4-dimensional embedding of each neighbor, as

described in Kwiatkowski et al. [87]. They use a 2-dimensional action space with polar velocity

dynamics. The episode length is 1000 for MuJoCo experiments, and 200 for crowd simulation

experiments.

We train the agents with the PPO algorithm, with hyperparameters based on the RL Baselines

Zoo [133] for the MuJoCo environments, and from Kwiatkowski et al. [87] for the crowd environ-

ments. It is worth noting that the MuJoCo hyperparameters have been tuned for a prior version of

the environments (v3), and thus the results can be different. We use the optimal value of λ in the

exponential discounting paradigm, and apply it analogously with UGAE. A single training takes

2-5 hours with a consumer GPU.

101

10
0

10
1

10
2

10
3

10
4

10
5

Episode length

10
3

10
1

10
1

10
3

10
5

10
7

Ti
m

e
(m

s)

Vectorized UGAE
Recursive GAE
Training step duration

Figure 5.4: Time needed to compute GAE (orange) and UGAE (blue) with a single consumer
CPU, on log-log scale. The green line is a reference duration of 10 seconds representing a typical
training iteration. While UGAE is more expensive, with typical training step durations, the time
to compute its values is negligible.

5.5.1 Results

We show the results in Figure 5.3. In all tested environments, training with UGAE leads to a

higher performance compared to the MC baseline, with the largest effect being present in the

Inverted Double Pendulum where UGAE achieves a mean episode reward of 8213 ± 1067, while

MC only achieves 3364 ± 1078. The effect is smaller in the Humanoid Standup task, but still

significant, with the final rewards being 137300 ± 3400 and 129000 ± 2520 respectively. In the

crowd scenarios, a more detailed analysis of the emergent behaviors indicates that agents trained

with MC fail to maintain a comfortable speed (which is part of the reward function), while UGAE

agents are able to efficiently navigate to their goals. This results in rewards of 11.2 ± 1.457 for

UGAE and -0.156 ± 2.745 for MC in the Corridor scenario; and -1.46 ± 1.50 for UGAE and

-35.15 ± 8.81 for MC in the Crossway scenario.

5.5.2 Computation time

To estimate the computational impact of our vectorized UGAE formulation as compared to the

standard recursive GAE, we generate 16 random episodes with a length between 1 and 100,000

steps, and plot the time needed to compute the advantages as a function of the episode length.

The results are in Figure 5.4. For a reference duration of a full training step, we use 10 seconds. It

shows that while the computational cost of UGAE (blue) is larger than that of GAE (orange line),

it remains insignificant compared to a full training step with episodes shorter than 104 steps. For

longer episodes, it becomes noticeable, however, this is rarely the case in practice.

5.5.3 Discussion

As our experiments show, using UGAE with episodes of length up to ca. 103 steps carries a

negligible computational cost, allowing its seamless integration into a PPO training pipeline. At the

same time, it enables a performance improvement mirroring that of GAE, but for non-exponential

discounting. In conjunction with Beta-weighted discounting, it enables practical and efficient

training of agents with non-exponential discounting.

The main limitation of our work lies in the asymptotic complexity of advantage computation.

102

The time needed to compute the UGAE advantage is negligible with episodes up to around 103

steps, and becomes noticeable (although still not overwhelmingly so) at around 104 steps. In the

rare scenario one needs to compute the advantages for episodes over 104 steps, the computation

may become too expensive and require truncating the discounting.

Our beta-weighted discounting adds a new hyperparameter, which is a potential challenge, as

RL algorithms typically already have a large number of hyperparameters that must be optimized.

However, due to the interpretation of η, there is a natural default value of η = 0 which corresponds

to exponential discounting. With the other extreme being η = 1, this yields a compact range of

possible values that can be easily included in a hyperparameter optimization procedure. This also

opens the door to further research on automatically tuning the discount factor from a wider family

of possibilities as opposed to just exponential methods.

5.6 Conclusions

Our work follows the exciting trend of rethinking the discounting mechanism in RL. In typical

applications, our UGAE can be used with negligible overhead, and together with Beta-weighted

discounting they provide an elegant way to perform efficient non-exponential discounting. To our

knowledge, UGAE is the first method that enables using arbitrary discounting mechanisms in

Actor-Critic algorithms. Our experiments show that using non-exponential discounting gives more

flexibility in the temporal properties of the RL agent, and thus enables more diverse emergent

behaviors. Importantly, this work makes it possible for researchers to empirically investigate

different methods of discounting and their relation with various RL problems, including state-

dependent discounting. A challenging but valuable contribution would be developing a method

to analyze the properties of an environment, and relating them to the ideal discounting method.

Finally, developing an analogous method for value-based algorithms like DQN or DDPG would

make it possible to use arbitrary discounting with even more state-of-the-art RL algorithms.

103

104

Chapter 6

Conclusion

While Reinforcement learning is a powerful tool for simulating human-like crowds, many challenges

remain. Designing an appropriate simulation, and applying the appropriate learning algorithm to

it, still requires a fair amount of work and expertise. Nevertheless, we introduced four contributions

that simplify this line of work for future research:

1. A detailed literature review, providing an understanding of the state of the art of character

animation with RL (Chapter 2).

2. An analysis of observation and action spaces in a crowd simulation system, providing an

understanding of the basic design choices for the underlying simulation (Chapter 3).

3. A theoretical and empirical investigation into the properties of reward functions, providing

an understanding of the reward design for human-like crowds (Chapter 4).

4. A method for non-exponential discounting, providing a practical method to improve the

flexibility of reward optimizing algorithms (Chapter 5).

Simulation design As a basic exploration of the topic, we classified and evaluated different

types of basic observations and actions that can be used in a crowd simulation system (Chapter 3).

This is meant as a stepping stone for more advanced research – after all, how can we build a

house if we don’t know how to make a solid brick? Our inspiration was the fact that in prior

work, every project used something slightly different, without acknowledging the differences, thus

harming reproducibility and comparability.

For observations, we analyzed the issue of the reference frame – should it be absolute, or more

egocentric (Section 3.2.2)? In principle, both approaches make sense and can be justified, however

in practice, they are far from equal. While the details still depend on the scenario we are simulating,

egocentric representations tend to perform much better than absolute ones. Our interpretation is

that egocentric representations lose some of the information that absolute representations keep,

and in this way, they improve the generalization properties of the algorithm. After all, it is not

necessary know how to go from 48◦42′53′′N 2◦12′20′′E to 48◦43′33′′N 2◦15′32′′E, if we know how

to go a few kilometers north-east.

There is also the question of the actual information available to the agent – is simple raycasting

sufficient, or is it better to give agents the important positions directly (Section 3.2.2)? While our

previous result was slightly more human-like, we must resist the temptation of anthropomorphizing

105

our crowd agents. The intuition for raycasting (which, along with its simplicity, is the probable

reason for its ubiquity in prior work) can be as follows. Raycasting is a crude approximation of

human vision. Crowd agents are meant to be crude representations of real-world humans. So if their

method of perceiving the environment is human-like, the agents themselves will be more human-

like. While this reasoning might work in the future, with significantly more capable algorithms, for

now, it is out of reach. While raycasting models typically obtain a reasonable performance, they

are slower and less reliable than their counterparts using more direct perception. This is because

raycasting provides roughly the same information, but in a very obscured manner – so while agents

learn to navigate, they also have to learn to see, which overloads their small digital brains.

Finally, we have the actions, or equivalently, the environment dynamics (Section 3.2.3). We

identified two main orthogonal axes of designing an action space – whether it is based on polar

or Cartesian coordinates; and whether it is based on velocities or accelerations. The first axis

again corresponds to our intuitions about how humans do things – most of the time, we only

go in one direction, forward, while changing where “forward” actually is. Similarly, following

Newtonian mechanics, we tend to move our bodies by applying forces, i.e. accelerations. Velocity-

based controls are more flexible and enable crisper motion, but is that really something we need (as

researchers), or have (as humans)? Another perspective on this choice is that Cartesian velocity

controls are fully holonomic, i.e. they give the agent maximum flexibility. And yet, it often turns

out that more restrictive polar or acceleration-based dynamics perform better in practice. This is

likely due to their natural fit with egocentric observations – we do not need to know how to go

north-east if we know how to turn right a little bit and then go forward.

The main conclusion from this chapter is that nothing is simple, and nothing is obvious. While

we have observed some regularities in which design choices outperform the others, there is no silver

bullet. And because every possible choice has some intuition (and prior work) behind it, we really

need to be careful and validate our assumptions – otherwise we risk putting in significant effort to

optimize a system, which is being undermined by an inefficient design.

Reward design With a fundamental simulation in place, we then proceeded to investigate the

question of designing the right reward function. This is arguably the most important part of

designing any RL system, or more broadly, any AI system. We have to ensure that the incentives

we give to the agents, lead them to behave the way we want them to behave. If this seems simple

and obvious, we recommend that the reader does not interact with any strange spirits trapped in

bottles.

Our motivation, similarly to the previous chapter, was the lack of consistency in prior work.

Researchers have proposed various approaches, often coming from the principle of “We found that

this works well enough.” However, there are many designs which might make some sense, appear

to work well enough, and yet be fundamentally flawed, causing issues that we did not even know

we have to look out for.

In fact, we observed an example of this phenomenon in Chapter 3. The reward function we

designed made sense – a guiding potential, and an additional term encouraging agents to move

at their comfortable velocity. Moving slower or faster leads to a lower reward, so agents should

move at just the right speed. However, it is important to keep in mind that the nature of the

navigation task disrupts the naive reward design quite a bit. Moving at a slower velocity increases

the time required to reach the goal, implicitly penalizing those velocities if the overall rewards

are negative. Moreover, due to the discounted utility paradigm common in RL, future rewards

106

become less important in the learning process, further penalizing slower velocities. With all of

these implicit pressures, what happens if we also penalize slow velocities explicitly? As we found

out, we obtain bike-like agents that do their best to maintain their velocity, even if that means

making loops in place while waiting for an obstacle to pass.

With this experience, we set out to create a more principled design for the reward function.

The overarching goal is creating human-like agents, which begs the question – what does it mean to

be human-like? To make this task tractable, we settled on a working definition using the concept

of energy efficiency. Prior work suggests that humans tend to act in a way that minimizes the

perceived effort, so this approach has a better theoretical foundation beyond seeming correct. It

is also sufficiently well-defined to be practical – even though a precise estimation of human energy

usage is rather difficult, we can use a simple approximation, and then refine it as needed.

We identified two main problems with using the (negative) energy usage directly as the reward

function. The first one is the local problem. When training an RL agent from scratch, it begins by

randomly taking actions, and adjusting its action distributions to favor higher rewards. However,

if reaching the goal is out of reach for such an agent (e.g. due to a long distance), the high reward

actions tend to be ones minimizing energy in the simplest way – by not moving. Then, we have

the global problem. Due to the discounted utility paradigm commonly used in RL, in certain

cases, it turns out that standing still is actually the optimal policy. The effect of discounted utility

is that agents are biased for getting reward sooner than later, and that can be obtained by using

less energy in the short term, even at a detriment to the long-term navigation goal. If the discount

factor is too low, then simply standing still will be the optimal policy, because the distant reward

of navigation success is too far in time.

Our main proposed solution to both of these problems is adding a potential term. This by itself

is not novel, but for the first time, we analytically derive the exact magnitude of this potential. We

found that there is only one coefficient for which the discount factor does not affect the effective

optimal velocity. This is a very useful property, as it allows us to again treat the discount factor

as a hyperparameter of the learning algorithm, with less of an impact on the decision process.

We also showed that curriculum learning approaches are highly effective for this task, and make it

possible to actually optimize just the energy (without a potential) in the final stages of the training

– as long as the discount factor is set to 1.

Overall, in Chapter 4 we found a more principled way of designing the reward function for

training human-like agents with RL. We provided theoretical insights justifying our designs, and

validated them empirically, showing what approaches work, and what approaches fail. While this

does not entirely solve the question of reward design for life-like agents, it contributes to the

construction of a foundation upon which RL-based crowd simulation can be built, without having

to worry about hidden assumptions and suboptimal designs.

Reward optimization In Chapter 5, the final chapter of this thesis, we continue the direction

of investigating the reward functions, this time from the perspective of the learning algorithm.

As we discussed in Chapter 4, some complications in RL-based crowd simulation arise due to

the discounted utility paradigm. Notably, modern RL algorithms can only really use exponential

discounting, which is theoretically well-justified for rational agents, but also highly restrictive for

agents which need not be perfectly rational.

The motivating question was fairly simple – can we use the same modern RL algorithms,

but use non-exponential discounting instead of the usual exponential approach? All of our prior

107

experiments were performed using Proximal Policy Optimization (PPO) with Generalized Ad-

vantage Estimation (GAE), and to our surprise, no prior work connected these algorithms with

non-exponential discounting.

To close this gap, we introduced the Universal Generalized Advantage Estimation (UGAE)

algorithm. It serves as a computationally efficient method of estimating the advantage values fol-

lowing the GAE approach, but using any non-exponential discounting, while GAE is only restricted

to exponential discounting. We also showed how any distribution over discount factors γ ∈ [0, 1]

can be reinterpreted as a new, non-exponential discounting.

In conjunction with UGAE, we introduced Beta-weighted discounting. “Beta” refers to the

Beta distribution, which weighs individual discount factors. This distribution has the interesting

property of continuously interpolating between exponential and hyperbolic discounting, depending

on the values of its parameters. This gives us a parametrized family of non-exponential discounting

methods, which can be easily computed by using well-known properties about the Beta distribution,

and has an intuitive interpretation as being a transitional state between exponential and hyperbolic

discounting.

The main role of this chapter is opening the door to new, exciting research involving non-

exponential discounting. After all, humans are not perfectly rational and tend to exhibit more

hyperbolic temporal discounting, so approaches like this may become instrumental for imitating

human behavior – including human behavior within a crowd.

Perspectives

The work in this thesis serves as a solid and principled foundation for RL-based crowd simulation

systems, but the field is far from solved. There are many directions that can be explored in the

future, building upon these methods. Here we aim to provide an overview of the potential future

of the field, and how this thesis will contribute to it.

Every aspect of the foundational simulation design choices we discussed can be taken even

further and improved for the purpose of increased realism. While in this work we used a simple

permutation-invariant representation of nearby agents, a better performance may be attainable

using the attention mechanism [172], which recently revolutionized the field of Natural Language

Processing. Similarly, action spaces may be refined to be more realistic models of human movement,

e.g. by modelling individual footsteps, or potentially even the entire human body. Finally, the

reward function used to encourage “human-likeness” may be refined to better reflect real human

behavior, either by better modelling of perceived effort or via data-driven methods.

Going beyond the fundamentals, it is worth keeping in mind that often, a crowd cannot be

reduced to a collection of individuals – instead, it is composed of smaller structures, such as couples,

families, and groups of friends. Sometimes, the structures may even have smaller substructures, like

a city tour consisting of multiple families, navigating through a crowd of locals. It is possible that

a hierarchical structure would be suitable to model such phenomena, with an individual moving

within a family the same way that a family moves within a crowd. This would make it possible

to choose the right level of detail for the simulation depending on the needs at any given moment,

which is particularly valuable for interactive media like video games. To the best of our knowledge,

such approaches have not been evaluated with RL, so this paves a clear path for future work.

Finally, crowd simulation is commonly used across the entertainment industry and beyond –

large scenes in movies, video games, but also urban design and architecture. Each of these domains

108

carries its own set of unique challenges and adaptations, so as RL methods become more efficient

and reliable, it will be worthwhile to refine them into variants suited for each of these applications.

Eventually, RL may become the standard method for animating human-like crowds, and we hope

that this thesis will be a step towards that future.

109

110

Appendix A

Non-exponential reward

discounting

A.1 Proofs

Notation

• Γ(t) – general discount factor at step t

• rt – reward at step t

• V (s) – value estimate of a state s

• Γ(z) =
∫∞
0
xz−1e−xdx – the usual Gamma function

• B(α, β) =
∫ 1

0
tα−1(1 − t)β−1dt = Γ(α)Γ(β)

Γ(α+β)

• ∆(X) – set of probability distributions on the set X

Theorem 1. UGAE: GAE with arbitrary discounting

Consider rrrt = [rt+i]i∈N, VVV t = [V (st+i)]i∈N, ΓΓΓ = [Γ(i)]i∈N, ΓΓΓ′ = [Γ(i+1)]i∈N, λλλ = [λi]i∈N. We

define the GAE with arbitrary discounting as:

Ã
UGAE(Γ,λ)
t := −V (st) + (λλλ⊙ΓΓΓ) · rrrt + (1 − λ)(λλλ⊙ΓΓΓ′) · VVV t+1 (A.1)

If Γ(t) = γt, this is equivalent to the standard GAE advantage.

Proof. Recall that we defined the k-step advantage as

Ã
(k)
t := −V (st) +

k−1∑
l=0

Γ(l)rt+l + Γ(k)V (st+k).

111

With this, we expand the expression for UGAE as

Ã
UGAE(Γ,λ)
t = (1− λ)(Ã

(1)
t + λÃ

(2)
t + λ2Ã

(3)
t + . . .) (A.2)

= (1− λ)
[
−V (st) + rt + Γ(1)V (st+1)− λV (st) (A.3)

+λrt + λΓ(1)rt+1 + λΓ(2)V (st+2) + . . .
]

(A.4)

= (1− λ)

[
−

∞∑
l=0

(λl)V (st) +

∞∑
l=0

(λl)rt +

∞∑
l=1

(λl)Γ(1)r1 + . . . (A.5)

+Γ(1)V (st+1) + λΓ(2)V (st+2) + . . .
]

(A.6)

= (1− λ)

[
−V (st)

1− λ
+

rt
1− λ

+
λΓ(1)rt+1

1− λ
+ . . . (A.7)

+Γ(1)V (st+1) + λΓ(2)V (st+2) + . . .
]

(A.8)

= −V (st) +

∞∑
l=0

λlΓ(l)rt+l + (1− λ)

∞∑
l=0

λlΓ(l+1)V (st+l+1) (A.9)

= −V (st) + (λλλ⊙ΓΓΓ) · rrrt + (1− λ)(λλλ⊙ΓΓΓ′) · VVV t+1 (A.10)

showing the validity of Equation 5 in the main manuscript. To reduce it to standard GAE with

exponential discounting, it is sufficient to replace Γ(···) with γ··· in the second line of Equation A.2

and follow the proof from Schulman et al. [145].

Theorem 2. UGAE added bias

Consider an arbitrary summable discounting Γ(t) in an environment where the reward is bounded

by R ∈ R. The additional bias, defined as the discrepancy between the UGAE and Monte Carlo

value estimations, is finite.

Proof. The goal is to find a finite bound on the difference between the empirical (Monte Carlo)

value estimate used for bootstrapping the advantage estimation, and the value estimation used in

UGAE, in the infinite time limit. This can be expressed as follows:

∣∣∣∣∣
∞∑
l=0

Γ(l+1)λlV̂ (st+l+1) −
∞∑
l=0

λlV Γ
l+1(st+l+1)

∣∣∣∣∣ (A.11)

where V Γ
l+1 is the true value as discounted with Γ, l steps after the step for which we compute the

advantage, and V̂ is the UGAE estimate:

V Γ
k (st) = E

∑
t′

Γ(k+t′)rt′ (A.12)

V̂k(st) = E
∑
t′

Γ(t′)rt′ (A.13)

112

With this we can expand the expression in Equation A.11 as follows:∣∣∣∣∣
∞∑
l=0

Γ(l+1)λlV̂ (st+l+1) −
∞∑
l=0

λlV Γ
l+1(st+l+1)

∣∣∣∣∣ = (A.14)

=

∣∣∣∣∣
∞∑
l=0

λl
[
Γ(l+1)V̂ (st+l+1) − V Γ

l+1(st+l+1)
]∣∣∣∣∣ = (A.15)

=

∣∣∣∣∣
∞∑
l=0

λl

[
Γ(l+1)E

∑
t′

Γ(t′)rt′ − E
∑
t′

Γ(l+1+t′)rt′

]∣∣∣∣∣ = (A.16)

= E

∣∣∣∣∣
∞∑
l=0

λl
∑
t′

[
Γ(l+1)Γ(t′) − Γ(l+1+t′)

]
rt′

∣∣∣∣∣ ≤ (A.17)

≤ E

∣∣∣∣∣
∞∑
l=1

λ(l−1)
∑
t′

[
Γ(l)Γ(t′) − Γ(l+t′)

]∣∣∣∣∣R (A.18)

We now focus on the key expression of the last line, which we denote as δΓl :

δΓl =
∑
t′

Γ(l)Γ(t′) − Γ(l+t′) ≤

≤
∑
t′

Γ(l)Γ(t′) ≤

≤ max
t

Γ(t)
∑
t′

Γ(t′) ≤ ∞

This shows that δΓl is finite for any summable discounting Γ and for every value of l. Because

the δΓl terms are summed with an exponentially decreasing factor λ(l−1) in Equation A.18, the

total difference in Equation A.11 must also be finite, completing the proof.

Theorem 3. Beta-weighted discounting

Consider α, β ∈ [0,∞). The following equations hold for the Beta-weighted discount vector

parametrized by α, β:

Γ(t) =

t−1∏
k=0

α+ k

α+ β + k
(A.19)

Γ(t+1) =
α+ t

α+ β + t
Γ(t) (A.20)

Proof. As mentioned in the paper, if we use an effective discount factor obtained by weighing

individual values according to some probability distribution w ∈ ∆([0, 1]), the effective discount

factor at step t is given by the distribution’s raw moment Γ(t) = mt, where

mt =

∫ 1

0

w(γ)γtdγ

Consider the Beta distribution. Its probability distribution function [71] is given by the follow-

ing expression:

f(x;α, β) =
1

B(α, β)
xα−1(1 − x)β−1

113

The raw moments can be obtained as follows:

Γ
(t)

= mt =

∫ 1

0

x
t
f(x;α, β)

=

∫ 1

0

x
t 1

B(α, β)
x
α−1

(1 − x)
β−1

=
1

B(α, β)

∫ 1

0

x
(α+t)−1

(1 − x)
β−1

=
1

B(α + β)
B(α + t, β)

=
Γ(α + β)

Γ(α)Γ(β)
×

×
Γ(α) · α · (α + 1) · . . . · (α + t − 1) · Γ(β)

Γ(α + β) · (α + β) · (α + β + 1) · . . . · (α + β + t − 1)

=
α · (α + 1) · . . . · (α + t − 1)

(α + β) · (α + β + 1) · . . . · (α + β + t − 1)

=

t−1∏
k=0

α + k

α + β + k

which proves Equation A.19. We then consider the recurrence between consecutive Γ(·) values

Γ(t+1) =

t∏
k=0

α+ k

α+ β + k

=
α+ t

α+ β + t

t−1∏
k=0

α+ k

α+ β + k

=
α+ t

α+ β + t
Γ(t)

proving Equation A.20 and completing our proof of Theorem 1.

Lemma 4. Special cases of Beta-weighted discounting

Consider a discounting Γ(t) given by the Beta-weighted discounting parametrized by µ ∈ (0, 1), η ∈
(0, 1]. The following is true:

• if η → 0, then Γ(t) = µt, i.e. it is equal to exponential discounting

• if η = 1, then Γ(t) = µ
µ+(1−µ)t = 1

1+t/α , i.e. it is equal to hyperbolic discounting

Proof. Remember that µ = α+β
β , η = 1

β . Let us first consider η → 0, i.e. β → ∞ so that
α

α+β = const. Note that this also implies α→ ∞. Consider the expression for Γ(t):

Γ(t) =

t−1∏
k=0

α+ k

α+ β + k

As α and β grow arbitrarily high, the bounded values of k become negligible, and the expression

can be reduced to

Γ(t) =

t−1∏
k=0

α

α+ β
=

t−1∏
k=0

µ = µt.

For η = 1, we can reuse the expression obtained in the proof of Lemma 5. As shown there,

with β = η = 1, the effective discount factor is

Γ(t) =
1

1 + t/α

114

which with k = 1
α , becomes the usual hyperbolic discounting:

Γ(t) =
1

1 + kt

thus completing the proof.

Lemma 5. Beta-weighted discounting summability

Given the Beta-weighted discount vector Γ(t) =
∏t−1

k=0
α+k

α+β+k , α ∈ [0,∞), β ∈ [0,∞), the

following property holds:

∞∑
t=0

Γ(t) =


α+β−1
β−1 if β > 1

∞ otherwise
(A.21)

Thus, Beta-weighted discounting is summable iff β > 1.

Proof. First, we analyze the convergence of Beta-weighted Γ(t) depending on α, β.

In particular, we consider the series:

S =

∞∑
t=0

at =

∞∑
t=0

(
t−1∏
k=0

α+ k

α+ β + k

)

We then use the Raabe’s convergence test [6]. Given a series (at) consider the series of terms

bt = t
(

at

at+1
− 1
)

and its limit L = limt→∞ bt. There are three possibilities:

• if L > 1, the original series converges

• if L < 1, the original series diverges

• if L = 1, the test is inconclusive

In the case of Beta-weighted discounting, we have:

lim
t→∞

bt = t


t−1∏
k=0

α+k
α+β+k

t∏
k=0

α+k
α+β+k

− 1


= lim

t→∞

t
α+t

α+β+t

− t

= lim
t→∞

αt+ βt+ t2 − αt− t2

α+ t

= lim
t→∞

βt

α+ t

= β

Thus, we show that Beta-weighted discounting is summable with β > 1 and nonsummable with

β < 1. For β = 1, we can rewrite the effective discount factor as:

115

Γ(t) =

t−1∏
k=0

α+ k

α+ β + k
(A.22)

=

t−1∏
k=0

α+ k

α+ k + 1
(A.23)

=
α ·����(α+ 1) · . . . ·�����

(α+ t− 2) ·�����
(α+ t− 1)

����(α+ 1) ·����(α+ 2) · . . . ·�����
(α+ t− 1) · (α+ t)

(A.24)

=
α

α+ t
(A.25)

=
1

1 + t/α
(A.26)

The series
∑∞

t=0
1

1+t/α is a general harmonic series and therefore divergent, completing the

proof of convergence.

To obtain the exact value, we use the following Taylor expansion

1

1 − x
= 1 + x+ x2 + ...

By evaluating the expected value of this expression with the Beta distribution’s probability density

function w(x), we obtain the desired sum of all discount factors:

E(
1

1 −X
) =

∫ 1

0

1

1 − x
f(x;α, β)dx

=

∫ 1

0

w(x) + xw(x) + x2w(x) + . . . dx

=

∫ 1

0

x0w(x)dx+

∫ 1

0

x1w(x)dx+ . . .

= Γ(0) + Γ(1) + . . . =

∞∑
t=0

Γ(t)

This expression can be expanded as follows:

E(
1

1 −X
) =

∫ 1

0

1

1 − x
f(x;α, β)dx

=

∫ 1

0

(1 − x)−1 1

B(α, β)
xα−1(1 − x)β−1

=
1

B(α, β)

∫ 1

0

xα−1(1 − x)(β−1)−1

=
B(α, β − 1)

B(α, β)

=
Γ(α)Γ(β − 1)

Γ(α+ β − 1)

Γ(α+ β)

Γ(α)Γ(β)

= ���Γ(α)����Γ(β − 1)

((((((
Γ(α+ β − 1)

(α+ β − 1)((((((
Γ(α+ β − 1)

(β − 1)���Γ(α)����Γ(β − 1)

=
α+ β − 1

β − 1

116

completing the proof.

A.2 Beta-weighted Discounting Properties

In Table A.1 we present the values of the properties described in Section 5 for a set of discounting

methods. For each of them, we list their normalized partial sums Γ10
0 , Γ100

10 , Γ1000
100 , Γ10000

1000 , the

variance measure, the effective time horizon, and the total sum of the first 1000 steps.

Table A.1: The values of different metrics for a chosen set of discounting method and their param-
eters.

Discounting
method

Γ10
0 Γ100

10 Γ1000
100 Γ10000

1000

Variance
10000∑
t=0

Γ(t)2 Teff

Total
1000∑
t=0

Γ(t)

No discounting 0.001 0.009 0.090 0.900 10000 6322 1000

Exponential
γ = 0.99

0.096 0.538 0.366 0.000 50.25 100 100

Exponential
γ = 0.999

0.010 0.085 0.537 0.368 500.25 1000 632.3

Exponential
γ = 0.97

0.263 0.690 0.0480 0.000 16.92 33 33.3

Beta-weighted
µ = 0.99, η = 0.5

0.049 0.293 0.509 0.149 66.67 323 166.1

Beta-weighted
µ = 0.97, η = 0.5

0.135 0.476 0.334 0.055 22.23 110 61.7

Hyperbolic
µ = 0.99

0.021 0.130 0.370 0.479 98.53 1741 238.8

Hyperbolic
µ = 0.25

0.439 0.188 0.187 0.187 1.12 107 3.3

Fixed-horizon
Tmax = 100

0.100 0.900 0.000 0.000 100 64 100

Fixed-horizon
Tmax = 160

0.062 0.562 0.375 0.000 160 102 160

Truncated Exponential
γ = 0.99, Tmax = 100

0.151 0.849 0.000 0.000 43.52 51 63.4

Truncated Exponential
γ = 0.99, Tmax = 500

0.096 0.542 0.362 0.000 50.25 99 99.3

Truncated Beta-weighted
µ = 0.99, η = 0.5, Tmax = 100

0.143 0.857 0.000 0.000 47.11 54 69.4

Truncated Hyperbolic
µ = 0.99, Tmax = 100

0.138 0.862 0.000 0.000 50.13 55 69.4

Truncated Hyperbolic
µ = 0.99, Tmax = 500

0.054 0.335 0.612 0.000 83.13 210 178.6

117

2 4 6 8 10 12 14
Path index i

0

1

2

3

4

5

Pa
th

 re
tu

rn

empirical
hyperbolic, k=0.05
exponential, =0.9
exponential, =0.95
exponential, =0.975
exponential, =0.99
beta-weighted, =0.95, =0.5

Figure A.1: Pathworld environment results under different discounting schemes. Hyperbolic [36]
and exponential (various curves) discountings fail to approximate the empirical (dashed) value.
Instead, the proposed Beta-weighted discounting approximates it much better, despite its different
functional form.

A.3 Pathworld experiments

Table A.2: Values of the Mean Square Error for different discounting methods on the Pathworld
environment, summed across the first 14 paths i ∈ 1, 14. Lower is better.

Discounting method
discount

η MSE
factor†

Exponential 0.990 0 3.962
Exponential 0.950 0 0.446
Exponential 0.975 0 0.242
Hyperbolic‡ 0.05 1 0.250
Beta-Weighted 0.95 0.5 0.032

†: factor is γ for exponential
k for hyperbolic
µ for Beta-weighted

‡: Results obtained by our re-implementation
of [36]

We showcase the utility of our method on a simple toy environment called the Pathworld

introduced by Fedus et al. [36]. Our goal is to show that Beta-weighted discounting can accurately

model the presence of unknown risk in an environment, even without being designed to a priori

match the functional form of the risk distribution.

A.3.1 Setup

In Pathworld, the agent takes a single action and observes a single reward after some delay. The

actions (i.e. paths) are indexed by natural numbers. When taking the i-th path, the agent receives

a reward r = i after d = i2 steps. Each path may also be subject to some hazard. In each episode,

a risk λ is sampled from the uniform distribution U([0, 2k]) for a given parameter k. Given the risk

λ, at each timestep on the path, the agent has a chance (1− e−λ) of dying, and thus not collecting

any reward in that episode. The task of the agent is to use experience gathered without risk, and

use the discounting to accurately predict a path’s value when evaluated with an unknown risk.

118

A.3.2 Pathworld results

If the risk is sampled from the Dirac Delta distribution H = δ(λ − λ0), the optimal discounting

method is exponential discounting, i.e. Γt = γt with γ = e−λ. As shown in [36], if the risk is

sampled from an exponential distribution H = 1
k exp(−λ/k), the optimal discounting scheme is

their hyperbolic discounting Γt = 1
1+kt .

As shown in Lemma 4, Beta-weighted discounting subsumes both exponential (µ=γ, η→0) and

hyperbolic discounting (α= 1
k , η=1). Thus, it directly models scenarios whose optimal discounting

is exponential or hyperbolic.

A more interesting scenario is when the functional form is different, e.g. when the risk is

sampled from a uniform distribution H ∼ U([0, 2λµ]). Figure A.1 and Table A.2 report the

results. We observe that Beta-weighted discounting (with µ chosen to fit the mean of the true

risk distribution, and η chosen heuristically to decrease the variance of the Beta distribution)

successfully outperforms all baselines, indicating that using Beta-weighted discounting enabled by

the proposed UGAE allows better modelling of unknown risk distributions in environments where

the risk phenomenon makes discounting necessary.

119

120

Appendix B

Reward function design

B.1 Discounting-invariant reward

Intermediate equations in 4.3.3. Derivatives and solutions computed using sympy.

Here we provide the intermediate stages of the computation in 4.3.3. All computations are

performed using sympy – finding the derivatives and roots of equations.

First, we reiterate the discounted sum of rewards with a discount factor γ and a guiding

potential with the coefficient cp
√
esew. (Equation 4.13)

Rγ =

∫ T

0

et ln γ
(
−es − ewv

2 + cp
√
esewv

)
dt =

1 − γ
d
v

− ln γ

(
−ewv2 + cp

√
esew − es

)
We differentiate the expression on the right hand side w.r.t. v, looking for a stationary point

that corresponds to the optimal velocity v∗:

dRγ

dv
= F (v, γ) = −dγ d

v

(
cp
√
esew
v

− es
v2

− ew

)
−

(
1 − γ

d
v

) (
cp
√
esew − 2ewv

)
log (γ)

= 0

While we cannot solve this analytically for v∗, we know that arguments for which F (v∗, γ) = 0

correspond to optimal velocities with a given γ. We are now interested in finding arguments where
dv∗

dγ = 0, i.e. changes in the discount factor do not affect the optimal velocity. We find that by

computing the implicit derivative:

dv

dγ
=

v

(
−d2γ

d+2v
v

(
−cpv

√
esew + es + ewv2

)
log (γ)2 − dv2γ

d+2v
v

(
cp

√
esew − 2ewv

)
log (γ) + v3γ2

(
γ

d
v − 1

) (
cp

√
esew − 2ewv

))

γ3

(
dv2γ

d
v
(
cp

√
esew − 2ewv

)
log (γ) + dγ

d
v
(
d
(
−cpv

√
esew + es + ewv2

)
log (γ) − v

(
cpv

√
esew − 2es

))
log (γ) + 2ewv4

(
γ

d
v − 1

))
log (γ)

= 0

Although this expression is even more complex, it turns out to be solvable analytically for cp:

cp =
d2esγ

d
v log (γ)

2
+ d2ewv

2γ
d
v log (γ)

2 − 2dewv
3γ

d
v log (γ) + 2ewv

4γ
d
v − 2ewv

4

v
√
esew

(
d2γ

d
v log (γ)

2 − dvγ
d
v log (γ) + v2γ

d
v − v2

) = 2

After substituting numerical values and v = v∗ =
√

es
ew

, we get the result cp = 2. This means

that if the potential has a coefficient of cp = 2, the optimal velocity will not change with the

121

discount factor.

B.2 Algorithmic details

The performance of agents trained with PPO tends to significantly depend on the exact implemen-

tation details of the algorithm [35, 9, 66]. Beyond a set of typical choices used in our implementation

(all of which can be found in the training code), we use a non-standard modification that we call

“rewind”, inspired by TRPO.

When performing gradient updates with a given batch of data, the algorithm typically keeps

changing the policy until a predefined number of updates elapses. Alternatively, if the KL di-

vergence between the behavior policy and the learned policy exceeds a predefined threshold, the

process is stopped immediately to obtain a fresh batch of data.

While this approach typically works sufficiently well for maintaining the on-policy assumption

of the policy gradient theorem, sometimes a single gradient update leads to a significant drop in

the performance, which would then take many training iterations to recover. To counteract this

effect, we save the policy parameters before each gradient update. If the KL divergence criterion

is triggered, the policy is rolled back to that saved state, ensuring that a single batch of data never

leads to an excessive change to the policy.

B.3 Reward implementation details

Due to various differences in the basic simulation setup, including but not limited to the design

choices described by Kwiatkowski et al. [87], we were unable to fully reproduce some of the results

from prior work. Here, we describe the differences between the reward functions described in other

papers, and our implementations.

Lee et al. [93] use the function they named FLOOD, which linearly penalizes velocities above

1.5 m/s and below −0.5 m/s. Because our simulation does not allow backwards movement, this is

reduced to a linear penalty to velocities exceeding the optimal velocity (which varies by agent).

Work by Xu and Karamouzas [186] focuses on using knowledge distillation for more human-like

behavior, but a key component of their reward function deals with the agents maintaining the right

speed. The expression listed in the paper is wv exp(σv||v − v∗||), with wv = 0.08 and σv = 0.85.

Notice, however, that this structure would incentivize large deviations from the optimal velocity

by maximizing ||v − v∗||. Due to the monotonicity of the exponential function, exactly one of

these parameters must be negative to optimize the behavior in the correct dimension. The source

code provided with the paper indicates that wv = 0.02 and σv = −0.85, but in our experiments

the reverse convention achieves significantly better results, i.e. wv < 0 and σv > 0. Furthermore,

in our experiments we use wv = −10 together with adjusted goal and collision rewards, because

values closer to the original ones failed to converge to reliable goal-seeking behavior.

122

Bibliography

[1] F. Abdolhosseini, H. Y. Ling, Z. Xie, X. B. Peng, and M. van de Panne. On Learning

Symmetric Locomotion. In Motion, Interaction and Games, MIG ’19, New York, NY, USA,

2019. Association for Computing Machinery. ISBN 978-1-4503-6994-7. doi: 10.1145/3359566.

3360070. URL https://doi.org/10.1145/3359566.3360070. event-place: Newcastle upon

Tyne, United Kingdom.

[2] J. Achiam. Spinning Up in Deep Reinforcement Learning. 2018.

[3] G. Ainslie and N. Haslam. Hyperbolic discounting. In Choice over time, pages 57–92. Russell

Sage Foundation, New York, NY, US, 1992. ISBN 978-0-87154-558-9.

[4] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. Optuna: A Next-generation

Hyperparameter Optimization Framework. In Proceedings of the 25th ACM SIGKDD Inter-

national Conference on Knowledge Discovery & Data Mining, pages 2623–2631, Anchorage

AK USA, July 2019. ACM. ISBN 978-1-4503-6201-6. doi: 10.1145/3292500.3330701. URL

https://dl.acm.org/doi/10.1145/3292500.3330701.

[5] S. A. Alexander. The Archimedean trap: Why traditional reinforcement learning will prob-

ably not yield AGI. Journal of Artificial General Intelligence, 11(1):70–85, Jan. 2020. ISSN

1946-0163. doi: 10.2478/jagi-2020-0004. URL http://arxiv.org/abs/2002.10221. arXiv:

2002.10221.

[6] S. A. Ali. The mth Ratio Test: New Convergence Tests for Series. The

American Mathematical Monthly, 115(6):514–524, June 2008. ISSN 0002-9890.

doi: 10.1080/00029890.2008.11920558. Publisher: Taylor & Francis eprint:

https://doi.org/10.1080/00029890.2008.11920558.

[7] E. Alonso, M. Peter, D. Goumard, and J. Romoff. Deep Reinforcement Learning for Navi-

gation in AAA Video Games. arXiv:2011.04764 [cs], Nov. 2020. URL http://arxiv.org/

abs/2011.04764. arXiv: 2011.04764.

[8] R. Amit, R. Meir, and K. Ciosek. Discount Factor as a Regularizer in Reinforcement Learn-

ing. In International Conference on Machine Learning, pages 269–278. PMLR, Nov. 2020.

ISSN: 2640-3498.

[9] M. Andrychowicz, A. Raichuk, P. Stańczyk, M. Orsini, S. Girgin, R. Marinier, L. Hussenot,

M. Geist, O. Pietquin, M. Michalski, S. Gelly, and O. Bachem. What Matters In On-Policy

Reinforcement Learning? A Large-Scale Empirical Study. arXiv:2006.05990 [cs, stat], June

2020. URL http://arxiv.org/abs/2006.05990. arXiv: 2006.05990.

123

https://doi.org/10.1145/3359566.3360070
https://dl.acm.org/doi/10.1145/3292500.3330701
http://arxiv.org/abs/2002.10221
http://arxiv.org/abs/2011.04764
http://arxiv.org/abs/2011.04764
http://arxiv.org/abs/2006.05990

[10] G. Arechavaleta, J.-P. Laumond, H. Hicheur, and A. Berthoz. On the nonholonomic nature

of human locomotion. Autonomous Robots, 25(1-2):25–35, Aug. 2008. ISSN 0929-5593,

1573-7527. doi: 10.1007/s10514-007-9075-2. URL http://link.springer.com/10.1007/

s10514-007-9075-2.

[11] O. Arikan and D. A. Forsyth. Interactive motion generation from examples. ACM Transac-

tions on Graphics (TOG), 21(3):483–490, 2002.

[12] M. Bain and C. Sammut. A Framework for Behavioural Cloning. In Machine Intelligence 15,

Intelligent Agents [St. Catherine’s College, Oxford, July 1995], pages 103–129, GBR, Jan.

1999. Oxford University. ISBN 978-0-19-853867-7.

[13] M. G. Bellemare, W. Dabney, and R. Munos. A Distributional Perspective on Reinforcement

Learning. In International Conference on Machine Learning, pages 449–458. PMLR, July

2017. URL http://proceedings.mlr.press/v70/bellemare17a.html. ISSN: 2640-3498.

[14] R. Bellman. A Markovian Decision Process. Journal of Mathematics and Mechanics, 6(5):

679–684, 1957. ISSN 0095-9057. Publisher: Indiana University Mathematics Department.

[15] R. E. Bellman. Dynamic Programming. Dover Publications, Inc., USA, 1957. ISBN 978-0-

486-42809-3.

[16] K. Bergamin, S. Clavet, D. Holden, and J. R. Forbes. Drecon: data-driven responsive control

of physics-based characters. ACM Transactions On Graphics (TOG), 38(6):1–11, 2019.

[17] D. S. Bernstein, S. Zilberstein, and N. Immerman. The complexity of decentralized control

of Markov decision processes. In Proceedings of the Sixteenth conference on Uncertainty in

artificial intelligence, UAI’00, pages 32–37, San Francisco, CA, USA, June 2000. Morgan

Kaufmann Publishers Inc. ISBN 978-1-55860-709-5.

[18] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, and

S. Wanderman-Milne. JAX: composable transformations of Python+NumPy programs, 2018.

URL http://github.com/google/jax.

[19] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and

W. Zaremba. OpenAI Gym. arXiv:1606.01540 [cs], June 2016.

[20] J. Bruneau, A.-H. Olivier, and J. Pettré. Going Through, Going Around: A Study on

Individual Avoidance of Groups. IEEE Transactions on Visualization and Computer Graph-

ics, 21(4):9, Apr. 2015. doi: 10.1109/TVCG.2015.2391862. URL https://hal.inria.fr/

hal-01149960.

[21] D. Budden, M. Hessel, J. Quan, S. Kapturowski, K. Baumli, S. Bhupatiraju, A. Guy,

and M. King. RLax: Reinforcement Learning in JAX, 2020. URL http://github.com/

deepmind/rlax.

[22] M. Carroll, R. Shah, M. K. Ho, T. L. Griffiths, S. A. Seshia, P. Abbeel, and A. Dragan. On

the Utility of Learning about Humans for Human-AI Coordination. arXiv:1910.05789 [cs,

stat], Oct. 2019. URL http://arxiv.org/abs/1910.05789.

124

http://link.springer.com/10.1007/s10514-007-9075-2
http://link.springer.com/10.1007/s10514-007-9075-2
http://proceedings.mlr.press/v70/bellemare17a.html
http://github.com/google/jax
https://hal.inria.fr/hal-01149960
https://hal.inria.fr/hal-01149960
http://github.com/deepmind/rlax
http://github.com/deepmind/rlax
http://arxiv.org/abs/1910.05789

[23] P. S. Castro, S. Moitra, C. Gelada, S. Kumar, and M. G. Bellemare. Dopamine: A Research

Framework for Deep Reinforcement Learning. 2018. URL http://arxiv.org/abs/1812.

06110.

[24] N. Chentanez, M. Müller, M. Macklin, V. Makoviychuk, and S. Jeschke. Physics-based

motion capture imitation with deep reinforcement learning. In Proceedings of the 11th annual

international conference on motion, interaction, and games, pages 1–10, 2018.

[25] F. Chollet and others. Keras, 2015. URL https://keras.io.

[26] R. Choudhury, G. Swamy, D. Hadfield-Menell, and A. D. Dragan. On the Utility of Model

Learning in HRI. In Proceedings of the 14th ACM/IEEE International Conference on Human-

Robot Interaction, HRI ’19, pages 317–325. IEEE Press, 2019. ISBN 978-1-5386-8555-6.

event-place: Daegu, Republic of Korea.

[27] P. F. Christiano, J. Leike, T. B. Brown, M. Martic, S. Legg, and D. Amodei. Deep Reinforce-

ment Learning from Human Preferences. In Proceedings of the 31st International Conference

on Neural Information Processing Systems, NIPS’17, pages 4302–4310, Red Hook, NY, USA,

2017. Curran Associates Inc. ISBN 978-1-5108-6096-4. event-place: Long Beach, California,

USA.

[28] A. Clegg, W. Yu, J. Tan, C. K. Liu, and G. Turk. Learning to Dress: Synthesizing Human

Dressing Motion via Deep Reinforcement Learning. ACM Trans. Graph., 37(6), Dec. 2018.

ISSN 0730-0301. doi: 10.1145/3272127.3275048. URL https://doi.org/10.1145/3272127.

3275048. Place: New York, NY, USA Publisher: Association for Computing Machinery.

[29] S. Coros, P. Beaudoin, and M. Van de Panne. Robust task-based control policies for physics-

based characters. In ACM SIGGRAPH Asia 2009 papers, pages 1–9. 2009.

[30] R. Coulom. Efficient selectivity and backup operators in Monte-Carlo tree search. In Pro-

ceedings of the 5th international conference on Computers and games, CG’06, pages 72–83,

Berlin, Heidelberg, May 2006. Springer-Verlag. ISBN 978-3-540-75537-1.

[31] E. Coumans and Y. Bai. PyBullet, a Python module for physics simulation for games, robotics

and machine learning. 2016. URL http://pybullet.org.

[32] S. Daftry, J. A. Bagnell, and M. Hebert. Learning Transferable Policies for Monocular

Reactive MAV Control. CoRR, abs/1608.00627, 2016. URL http://arxiv.org/abs/1608.

00627. eprint: 1608.00627.

[33] B. C. Daniel, R. Marques, L. Hoyet, J. Pettré, and J. Blat. A Perceptually-Validated Metric

for Crowd Trajectory Quality Evaluation. Proceedings of the ACM on Computer Graphics

and Interactive Techniques, 4(3):1–18, Sept. 2021. ISSN 2577-6193. doi: 10.1145/3480136.

URL https://dl.acm.org/doi/10.1145/3480136.

[34] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor,

Y. Wu, and P. Zhokhov. OpenAI Baselines, 2017. URL https://github.com/openai/

baselines. Publication Title: GitHub repository.

[35] L. Engstrom, A. Ilyas, S. Santurkar, D. Tsipras, F. Janoos, L. Rudolph, and A. Madry.

Implementation Matters in Deep Policy Gradients: A Case Study on PPO and TRPO.

125

http://arxiv.org/abs/1812.06110
http://arxiv.org/abs/1812.06110
https://keras.io
https://doi.org/10.1145/3272127.3275048
https://doi.org/10.1145/3272127.3275048
http://pybullet.org
http://arxiv.org/abs/1608.00627
http://arxiv.org/abs/1608.00627
https://dl.acm.org/doi/10.1145/3480136
https://github.com/openai/baselines
https://github.com/openai/baselines

arXiv:2005.12729 [cs, stat], May 2020. URL http://arxiv.org/abs/2005.12729. arXiv:

2005.12729.

[36] W. Fedus, C. Gelada, Y. Bengio, M. G. Bellemare, and H. Larochelle. Hyperbolic Discount-

ing and Learning over Multiple Horizons. arXiv:1902.06865 [cs, stat], Feb. 2019. arXiv:

1902.06865.

[37] M. Fortunato, M. G. Azar, B. Piot, J. Menick, I. Osband, A. Graves, V. Mnih, R. Munos,

D. Hassabis, O. Pietquin, C. Blundell, and S. Legg. Noisy Networks for Exploration.

arXiv:1706.10295 [cs, stat], June 2017. URL http://arxiv.org/abs/1706.10295. arXiv:

1706.10295 version: 1.

[38] S. Fujimoto, H. van Hoof, and D. Meger. Addressing Function Approximation Error in

Actor-Critic Methods. arXiv:1802.09477 [cs, stat], Oct. 2018. URL http://arxiv.org/

abs/1802.09477. arXiv: 1802.09477.

[39] V. G. Goecks, G. M. Gremillion, V. J. Lawhern, J. Valasek, and N. R. Waytowich. Inte-

grating Behavior Cloning and Reinforcement Learning for Improved Performance in Dense

and Sparse Reward Environments. In Proceedings of the 19th International Conference on

Autonomous Agents and MultiAgent Systems, AAMAS ’20, pages 465–473, Richland, SC,

2020. International Foundation for Autonomous Agents and Multiagent Systems. ISBN 978-

1-4503-7518-4. event-place: Auckland, New Zealand.

[40] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

[41] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,

and Y. Bengio. Generative Adversarial Networks. Commun. ACM, 63(11):139–144, Oct.

2020. ISSN 0001-0782. doi: 10.1145/3422622. URL https://doi.org/10.1145/3422622.

Place: New York, NY, USA Publisher: Association for Computing Machinery.

[42] S. Guadarrama, A. Korattikara, O. Ramirez, P. Castro, E. Holly, S. Fishman, K. Wang,

E. Gonina, N. Wu, E. Kokiopoulou, L. Sbaiz, J. Smith, G. Bartók, J. Berent, C. Harris,

V. Vanhoucke, and E. Brevdo. TF-Agents: A library for Reinforcement Learning in Tensor-

Flow, 2018. URL https://github.com/tensorflow/agents.

[43] D. Guo, L. Tang, X. Zhang, and Y.-C. Liang. Joint Optimization of Handover Control and

Power Allocation Based on Multi-Agent Deep Reinforcement Learning. IEEE Transactions

on Vehicular Technology, 69(11):13124–13138, Nov. 2020. ISSN 1939-9359. doi: 10.1109/

TVT.2020.3020400. Conference Name: IEEE Transactions on Vehicular Technology.

[44] J. K. Gupta, M. Egorov, and M. Kochenderfer. Cooperative Multi-agent Control Using Deep

Reinforcement Learning. In G. Sukthankar and J. A. Rodriguez-Aguilar, editors, Autonomous

Agents and Multiagent Systems, pages 66–83, Cham, 2017. Springer International Publishing.

ISBN 978-3-319-71682-4.

[45] S. J. Guy, J. Chhugani, S. Curtis, P. Dubey, M. Lin, and D. Manocha. PLEdestrians: A Least-

Effort Approach to Crowd Simulation. Eurographics/ ACM SIGGRAPH Symposium on Com-

puter Animation, page 10 pages, 2010. ISSN 1727-5288. doi: 10.2312/SCA/SCA10/119-128.

URL http://diglib.eg.org/handle/10.2312/SCA.SCA10.119-128. Artwork Size: 10

pages ISBN: 9783905674279 Publisher: The Eurographics Association.

126

http://arxiv.org/abs/2005.12729
http://arxiv.org/abs/1706.10295
http://arxiv.org/abs/1802.09477
http://arxiv.org/abs/1802.09477
https://doi.org/10.1145/3422622
https://github.com/tensorflow/agents
http://diglib.eg.org/handle/10.2312/SCA.SCA10.119-128

[46] D. Ha, A. Dai, and Q. V. Le. HyperNetworks. arXiv:1609.09106 [cs], Dec. 2016. URL

http://arxiv.org/abs/1609.09106. arXiv: 1609.09106.

[47] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft Actor-Critic: Off-Policy Maximum

Entropy Deep Reinforcement Learning with a Stochastic Actor. arXiv:1801.01290 [cs, stat],

Jan. 2018. URL http://arxiv.org/abs/1801.01290. arXiv: 1801.01290 version: 1.

[48] P. Hämäläinen, S. Eriksson, E. Tanskanen, V. Kyrki, and J. Lehtinen. Online motion syn-

thesis using sequential monte carlo. ACM Transactions on Graphics (TOG), 33(4):1–12,

2014.

[49] P. Hämäläinen, J. Rajamäki, and C. K. Liu. Online control of simulated humanoids using

particle belief propagation. ACM Transactions on Graphics (TOG), 34(4):1–13, 2015.

[50] E. A. Hansen, D. S. Bernstein, and S. Zilberstein. Dynamic programming for partially

observable stochastic games. In Proceedings of the 19th national conference on Artifical

intelligence, AAAI’04, pages 709–715, San Jose, California, July 2004. AAAI Press. ISBN

978-0-262-51183-4.

[51] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Courna-

peau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van

Kerkwijk, M. Brett, A. Haldane, J. F. del Ŕıo, M. Wiebe, P. Peterson, P. Gérard-Marchant,

K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant. Array

programming with NumPy. Nature, 585(7825):357–362, Sept. 2020. ISSN 1476-4687. doi:

10.1038/s41586-020-2649-2. Number: 7825 Publisher: Nature Publishing Group.

[52] B. Haworth, G. Berseth, S. Moon, P. Faloutsos, and M. Kapadia. Deep Integration of Physical

Humanoid Control and Crowd Navigation. pages 1–10, Oct. 2020. doi: 10.1145/3424636.

3426894.

[53] H. He. The State of Machine Learning Frameworks in

2019. The Gradient, 2019. URL https://thegradient.pub/

state-of-ml-frameworks-2019-pytorch-dominates-research-tensorflow-dominates-industry/.

[54] J. Heek, A. Levskaya, A. Oliver, M. Ritter, B. Rondepierre, A. Steiner, and M. v. Zee. Flax:

A neural network library and ecosystem for JAX, 2020. URL http://github.com/google/

flax.

[55] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger. Deep Rein-

forcement Learning that Matters. arXiv:1709.06560 [cs, stat], Sept. 2017. URL http:

//arxiv.org/abs/1709.06560. arXiv: 1709.06560 version: 1.

[56] T. Hennigan, T. Cai, T. Norman, and I. Babuschkin. Haiku: Sonnet for JAX, 2020. URL

http://github.com/deepmind/dm-haiku.

[57] M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan,

B. Piot, M. Azar, and D. Silver. Rainbow: Combining Improvements in Deep Reinforcement

Learning. arXiv:1710.02298 [cs], Oct. 2017. URL http://arxiv.org/abs/1710.02298.

arXiv: 1710.02298.

127

http://arxiv.org/abs/1609.09106
http://arxiv.org/abs/1801.01290
https://thegradient.pub/state-of-ml-frameworks-2019-pytorch-dominates-research-tensorflow-dominates-industry/
https://thegradient.pub/state-of-ml-frameworks-2019-pytorch-dominates-research-tensorflow-dominates-industry/
http://github.com/google/flax
http://github.com/google/flax
http://arxiv.org/abs/1709.06560
http://arxiv.org/abs/1709.06560
http://github.com/deepmind/dm-haiku
http://arxiv.org/abs/1710.02298

[58] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore, P. Dhariwal, C. Hesse,

O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor, and Y. Wu. Stable

Baselines, 2018. URL https://github.com/hill-a/stable-baselines. Publication Title:

GitHub repository.

[59] G. Hinton, O. Vinyals, and J. Dean. Distilling the Knowledge in a Neural Network.

arXiv:1503.02531 [cs, stat], Mar. 2015. URL http://arxiv.org/abs/1503.02531. arXiv:

1503.02531.

[60] J. Ho and S. Ermon. Generative Adversarial Imitation Learning. arXiv:1606.03476 [cs],

June 2016. URL http://arxiv.org/abs/1606.03476. arXiv: 1606.03476.

[61] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Computation, 9(8):

1735–1780, Nov. 1997. ISSN 0899-7667, 1530-888X. doi: 10.1162/neco.1997.9.8.1735. URL

http://www.mitpressjournals.org/doi/10.1162/neco.1997.9.8.1735.

[62] J. Hu, H. Wu, S. A. Harding, S. Jiang, and S.-w. Liao. RIIT: Rethinking the Importance of

Implementation Tricks in Multi-Agent Reinforcement Learning. arXiv:2102.03479 [cs], Feb.

2021. URL http://arxiv.org/abs/2102.03479. arXiv: 2102.03479.

[63] K. Hu, M. B. Haworth, G. Berseth, V. Pavlovic, P. Faloutsos, and M. Kapadia. Heterogeneous

Crowd Simulation using Parametric Reinforcement Learning. IEEE Transactions on Visual-

ization and Computer Graphics, pages 1–1, 2022. ISSN 1077-2626, 1941-0506, 2160-9306. doi:

10.1109/TVCG.2021.3139031. URL https://ieeexplore.ieee.org/document/9665307/.

[64] S. Hu, J. Hu, and S.-w. Liao. Noisy-MAPPO: Noisy Credit Assignment for Cooperative

Multi-agent Actor-Critic methods. arXiv:2106.14334 [cs], June 2021. URL http://arxiv.

org/abs/2106.14334. arXiv: 2106.14334 version: 1.

[65] S. Huang, R. Dossa, and C. Ye. CleanRL: High-quality Single-file Implementation of Deep

Reinforcement Learning algorithms, 2020. URL https://github.com/vwxyzjn/cleanrl/.

Publication Title: GitHub repository.

[66] S. Huang, R. F. J. Dossa, A. Raffin, A. Kanervisto, and W. Wang. The 37 Imple-

mentation Details of Proximal Policy Optimization. In ICLR Blog Track, 2022. URL

https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/.

[67] R. Hughes, J. Ondřej, and J. Dingliana. Holonomic collision avoidance for virtual crowds.

In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation,

SCA ’14, pages 103–111, Goslar, DEU, July 2015. Eurographics Association.

[68] M. Hüttenrauch, A. Sosic, and G. Neumann. Deep Reinforcement Learning for Swarm

Systems. arXiv:1807.06613 [cs, stat], June 2019. URL http://arxiv.org/abs/1807.06613.

arXiv: 1807.06613.

[69] M. Isogawa, Y. Yuan, M. O’Toole, and K. Kitani. Optical Non-Line-of-Sight Physics-Based

3D Human Pose Estimation. In 2020 IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), pages 7011–7020, Seattle, WA, USA, June 2020. IEEE. ISBN

9781728171685. doi: 10.1109/CVPR42600.2020.00704. URL https://ieeexplore.ieee.

org/document/9157058/.

128

https://github.com/hill-a/stable-baselines
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1606.03476
http://www.mitpressjournals.org/doi/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/2102.03479
https://ieeexplore.ieee.org/document/9665307/
http://arxiv.org/abs/2106.14334
http://arxiv.org/abs/2106.14334
https://github.com/vwxyzjn/cleanrl/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
http://arxiv.org/abs/1807.06613
https://ieeexplore.ieee.org/document/9157058/
https://ieeexplore.ieee.org/document/9157058/

[70] Y. Jiang, T. Van Wouwe, F. De Groote, and C. K. Liu. Synthesis of Biologically Realis-

tic Human Motion Using Joint Torque Actuation. ACM Trans. Graph., 38(4), July 2019.

ISSN 0730-0301. doi: 10.1145/3306346.3322966. URL https://doi.org/10.1145/3306346.

3322966. Place: New York, NY, USA Publisher: Association for Computing Machinery.

[71] N. L. Johnson, S. Kotz, and N. Balakrishnan. Continuous univariate distributions. Wiley

series in probability and mathematical statistics. Wiley, New York, 2nd ed edition, 1994.

ISBN 978-0-471-58495-7 978-0-471-58494-0.

[72] A. L. Jones. A Clearer Proof of the Policy Gradient Theorem. andyljones.com, 2020.

[73] A. Juliani, V.-P. Berges, E. Teng, A. Cohen, J. Harper, C. Elion, C. Goy, Y. Gao,

H. Henry, M. Mattar, and D. Lange. Unity: A General Platform for Intelligent Agents.

arXiv:1809.02627 [cs, stat], May 2020. URL http://arxiv.org/abs/1809.02627. arXiv:

1809.02627.

[74] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observ-

able stochastic domains. Artificial Intelligence, 101(1):99–134, May 1998. ISSN 0004-3702.

doi: 10.1016/S0004-3702(98)00023-X. URL https://www.sciencedirect.com/science/

article/pii/S000437029800023X.

[75] S. Kakade. A natural policy gradient. In Proceedings of the 14th International Conference on

Neural Information Processing Systems: Natural and Synthetic, NIPS’01, pages 1531–1538,

Cambridge, MA, USA, Jan. 2001. MIT Press.

[76] A. Karpathy. I’ve been using PyTorch a few months now and I’ve never felt better. [...], May

2017. URL https://twitter.com/karpathy/status/868178954032513024.

[77] L. Kidzin’ski, S. P. Mohanty, C. Ong, Z. Huang, S. Zhou, A. Pechenko, A. Stelmaszczyk,

P. Jarosik, M. Pavlov, S. Kolesnikov, S. Plis, Z. Chen, Z. Zhang, J. Chen, J. Shi, Z. Zheng,

C. Yuan, Z. Lin, H. Michalewski, P. Mi loś, B. Osiński, A. Melnik, M. Schilling, H. Ritter,

S. Carroll, J. Hicks, S. Levine, M. Salathé, and S. Delp. Learning to Run challenge so-

lutions: Adapting reinforcement learning methods for neuromusculoskeletal environments.

arXiv:1804.00361 [cs, stat], Apr. 2018. URL http://arxiv.org/abs/1804.00361. arXiv:

1804.00361.

[78] L. Kidziński, S. P. Mohanty, C. Ong, J. Hicks, S. Francis, S. Levine, M. Salathé, and S. Delp.

Learning to Run challenge: Synthesizing physiologically accurate motion using deep rein-

forcement learning. In S. Escalera and M. Weimer, editors, NIPS 2017 Competition Book.

Springer, Springer, 2018.

[79] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier, J. Frederic, K. Kelley,

J. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Abdalla, C. Willing, and J. d.

team. Jupyter Notebooks - a publishing format for reproducible computational workflows. In

F. Loizides and B. Scmidt, editors, Positioning and Power in Academic Publishing: Players,

Agents and Agendas, pages 87–90. IOS Press, 2016. URL https://eprints.soton.ac.uk/

403913/.

[80] L. Kovar, M. Gleicher, and F. Pighin. Motion graphs. Proceedings of ACM SIGGRAPH

2002, July, pages 473–482, 2002.

129

https://doi.org/10.1145/3306346.3322966
https://doi.org/10.1145/3306346.3322966
http://arxiv.org/abs/1809.02627
https://www.sciencedirect.com/science/article/pii/S000437029800023X
https://www.sciencedirect.com/science/article/pii/S000437029800023X
https://twitter.com/karpathy/status/868178954032513024
http://arxiv.org/abs/1804.00361
https://eprints.soton.ac.uk/403913/
https://eprints.soton.ac.uk/403913/

[81] V. C. V. Kumar, S. Ha, and C. K. Liu. Learning a unified control policy for safe falling. In

2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages

3940–3947, 2017. doi: 10.1109/IROS.2017.8206246.

[82] A. Kwiatkowski. RedTachyon/coltra-rl: Reward paper, July 2023. URL https://zenodo.

org/record/8126793.

[83] A. Kwiatkowski. RedTachyon/CrowdAI: Thesis version, Aug. 2023. URL https://zenodo.

org/record/8205093.

[84] A. Kwiatkowski, E. Alvarado, V. Kalogeiton, C. K. Liu, J. Pettré, M. van de Panne, and

M. Cani. A Survey on Reinforcement Learning Methods in Character Animation. Computer

Graphics Forum, 41(2):613–639, May 2022. ISSN 0167-7055, 1467-8659. doi: 10.1111/cgf.

14504. URL https://onlinelibrary.wiley.com/doi/10.1111/cgf.14504.

[85] A. Kwiatkowski, V. Kalogeiton, J. Pettré, and M.-P. Cani. Reward Function Design for

Crowd Simulation via Reinforcement Learning, Sept. 2023. URL http://arxiv.org/abs/

2309.12841. arXiv:2309.12841 [cs].

[86] A. Kwiatkowski, V. Kalogeiton, J. Pettré, and M.-P. Cani. UGAE: A Novel Approach

to Non-exponential Discounting, Feb. 2023. URL http://arxiv.org/abs/2302.05740.

arXiv:2302.05740 [cs].

[87] A. Kwiatkowski, V. Kalogeiton, J. Pettré, and M.-P. Cani. Understanding reinforce-

ment learned crowds. Computers & Graphics, 110:28–37, Feb. 2023. ISSN 00978493.

doi: 10.1016/j.cag.2022.11.007. URL https://linkinghub.elsevier.com/retrieve/pii/

S0097849322002035.

[88] M. Lanctot, E. Lockhart, J.-B. Lespiau, V. Zambaldi, S. Upadhyay, J. Pérolat, S. Srini-

vasan, F. Timbers, K. Tuyls, S. Omidshafiei, D. Hennes, D. Morrill, P. Muller, T. Ewalds,

R. Faulkner, J. Kramár, B. De Vylder, B. Saeta, J. Bradbury, D. Ding, S. Borgeaud, M. Lai,

J. Schrittwieser, T. Anthony, E. Hughes, I. Danihelka, and J. Ryan-Davis. OpenSpiel: A

Framework for Reinforcement Learning in Games. arXiv:1908.09453 [cs], Sept. 2020. URL

http://arxiv.org/abs/1908.09453. arXiv: 1908.09453.

[89] T. Lattimore and M. Hutter. Time Consistent Discounting. In J. Kivinen, C. Szepesvári,

E. Ukkonen, and T. Zeugmann, editors, Algorithmic Learning Theory, Lecture Notes in

Computer Science, pages 383–397, Berlin, Heidelberg, 2011. Springer. ISBN 978-3-642-24412-

4. doi: 10.1007/978-3-642-24412-4 30.

[90] J. Lee and K. H. Lee. Precomputing avatar behavior from human motion data. Graphical

models, 68(2):158–174, 2006.

[91] J. Lee, J. Chai, P. S. Reitsma, J. K. Hodgins, and N. S. Pollard. Interactive control of

avatars animated with human motion data. In Proceedings of the 29th annual conference on

Computer graphics and interactive techniques, pages 491–500, 2002.

[92] J. Lee, M. X. Grey, S. Ha, T. Kunz, S. Jain, Y. Ye, S. S. Srinivasa, M. Stilman, and C. K.

Liu. Dart: Dynamic animation and robotics toolkit. The Journal of Open Source Software,

3(22), 2018.

130

https://zenodo.org/record/8126793
https://zenodo.org/record/8126793
https://zenodo.org/record/8205093
https://zenodo.org/record/8205093
https://onlinelibrary.wiley.com/doi/10.1111/cgf.14504
http://arxiv.org/abs/2309.12841
http://arxiv.org/abs/2309.12841
http://arxiv.org/abs/2302.05740
https://linkinghub.elsevier.com/retrieve/pii/S0097849322002035
https://linkinghub.elsevier.com/retrieve/pii/S0097849322002035
http://arxiv.org/abs/1908.09453

[93] J. Lee, J. Won, and J. Lee. Crowd simulation by deep reinforcement learning. In Proceedings

of the 11th Annual International Conference on Motion, Interaction, and Games, pages 1–7,

Limassol Cyprus, Nov. 2018. ACM. ISBN 978-1-4503-6015-9. doi: 10.1145/3274247.3274510.

URL https://dl.acm.org/doi/10.1145/3274247.3274510.

[94] S. Lee, M. Park, K. Lee, and J. Lee. Scalable muscle-actuated human simulation and control.

ACM Transactions On Graphics (TOG), 38(4):1–13, 2019.

[95] S. Lee, S. Lee, Y. Lee, and J. Lee. Learning a family of motor skills from a single motion

clip. ACM Transactions on Graphics (TOG), 40(4):1–13, 2021.

[96] Y. Lee, K. Wampler, G. Bernstein, J. Popović, and Z. Popović. Motion fields for inter-

active character locomotion. ACM Transactions on Graphics, 29(6):138:1–138:8, Dec. 2010.

ISSN 0730-0301. doi: 10.1145/1882261.1866160. URL https://doi.org/10.1145/1882261.

1866160.

[97] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg, J. Gonzalez, M. Jordan,

and I. Stoica. RLlib: Abstractions for Distributed Reinforcement Learning. In J. Dy and

A. Krause, editors, Proceedings of the 35th International Conference on Machine Learning,

volume 80 of Proceedings of Machine Learning Research, pages 3053–3062. PMLR, July 2018.

URL http://proceedings.mlr.press/v80/liang18b.html.

[98] J. Liang, V. Makoviychuk, A. Handa, N. Chentanez, M. Macklin, and D. Fox. GPU-

Accelerated Robotic Simulation for Distributed Reinforcement Learning. arXiv:1810.05762

[cs], Oct. 2018. URL http://arxiv.org/abs/1810.05762. arXiv: 1810.05762.

[99] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.

Continuous control with deep reinforcement learning. arXiv:1509.02971 [cs, stat], Sept. 2015.

URL http://arxiv.org/abs/1509.02971. arXiv: 1509.02971 version: 1.

[100] H. Y. Ling, H. Yu Ling, F. Zinno, G. Cheng, and M. van de Panne. Character Controllers

Using Motion VAEs. ACM Trans. Graph, 39(4):12, 2020. doi: 10.1145/3386569.3392422.

URL https://doi.org/10.1145/3386569.3392422.

[101] D. Liu, Z. Wang, B. Lu, M. Cong, H. Yu, and Q. Zou. A Reinforcement Learning-Based

Framework for Robot Manipulation Skill Acquisition. IEEE Access, 8:108429–108437, 2020.

ISSN 2169-3536. doi: 10.1109/ACCESS.2020.3001130. Conference Name: IEEE Access.

[102] L. Liu and J. Hodgins. Learning to schedule control fragments for physics-based characters

using deep q-learning. ACM Transactions on Graphics (TOG), 36(3):1–14, 2017.

[103] L. Liu and J. Hodgins. Learning basketball dribbling skills using trajectory optimization and

deep reinforcement learning. ACM Transactions on Graphics (TOG), 37(4):1–14, 2018.

[104] L. Liu, K. Yin, M. van de Panne, T. Shao, and W. Xu. Sampling-based contact-rich motion

control. In ACM SIGGRAPH 2010 papers, pages 1–10. 2010.

[105] L. Liu, M. V. D. Panne, and K. Yin. Guided learning of control graphs for physics-based

characters. ACM Transactions on Graphics (TOG), 35(3):1–14, 2016.

131

https://dl.acm.org/doi/10.1145/3274247.3274510
https://doi.org/10.1145/1882261.1866160
https://doi.org/10.1145/1882261.1866160
http://proceedings.mlr.press/v80/liang18b.html
http://arxiv.org/abs/1810.05762
http://arxiv.org/abs/1509.02971
https://doi.org/10.1145/3386569.3392422

[106] P. Long, T. Fan, X. Liao, W. Liu, H. Zhang, and J. Pan. Towards Optimally Decentralized

Multi-Robot Collision Avoidance via Deep Reinforcement Learning. arXiv:1709.10082 [cs],

May 2018. arXiv: 1709.10082.

[107] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch. Multi-Agent Actor-Critic

for Mixed Cooperative-Competitive Environments. arXiv:1706.02275 [cs], Mar. 2020. URL

http://arxiv.org/abs/1706.02275.

[108] Y.-S. Luo, J. H. Soeseno, T. P.-C. Chen, and W.-C. Chen. CARL: Controllable Agent with

Reinforcement Learning for Quadruped Locomotion. ACM Trans. Graph., 39(4), July 2020.

ISSN 0730-0301. doi: 10.1145/3386569.3392433. URL https://doi.org/10.1145/3386569.

3392433. Place: New York, NY, USA Publisher: Association for Computing Machinery.

[109] L.-K. Ma, Z. Yang, X. Tong, B. Guo, and K. Yin. Learning and exploring motor skills with

spacetime bounds. In Computer Graphics Forum, volume 40, pages 251–263. Wiley Online

Library, 2021.

[110] M. Macklin. Differentiable Physics Simulation for Learning and Robotics. In GTC 2021,

2021.

[111] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Good-

fellow, Andrew Harp, Geoffrey Irving, Michael Isard, Y. Jia, Rafal Jozefowicz, Lukasz Kaiser,

Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Mur-

ray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal

Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,

Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Ten-

sorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. URL http:

//tensorflow.org/.

[112] J. Merel, S. Tunyasuvunakool, A. Ahuja, Y. Tassa, L. Hasenclever, V. Pham, T. Erez,

G. Wayne, and N. Heess. Catch & carry: reusable neural controllers for vision-guided whole-

body tasks. ACM Transactions on Graphics (TOG), 39(4):39–1, 2020.

[113] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,

M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,

I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-

level control through deep reinforcement learning. Nature, 518(7540):529–533, Feb. 2015.

ISSN 1476-4687. doi: 10.1038/nature14236. URL https://www.nature.com/articles/

nature14236.

[114] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Harley, T. P. Lillicrap, D. Silver, and

K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In Proceedings

of the 33rd International Conference on International Conference on Machine Learning -

Volume 48, ICML’16, pages 1928–1937, New York, NY, USA, June 2016. JMLR.org.

[115] I. Mordatch, E. Todorov, and Z. Popović. Discovery of complex behaviors through contact-

invariant optimization. ACM Transactions on Graphics, 31(4), 2012. ISSN 07300301. doi:

10.1145/2185520.2185539.

132

http://arxiv.org/abs/1706.02275
https://doi.org/10.1145/3386569.3392433
https://doi.org/10.1145/3386569.3392433
http://tensorflow.org/
http://tensorflow.org/
https://www.nature.com/articles/nature14236
https://www.nature.com/articles/nature14236

[116] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M. Elibol, Z. Yang,

W. Paul, M. I. Jordan, and I. Stoica. Ray: A Distributed Framework for Emerging AI

Applications. arXiv:1712.05889 [cs, stat], Sept. 2018. URL http://arxiv.org/abs/1712.

05889. arXiv: 1712.05889.

[117] L. Mourot, L. Hoyet, F. L. Clerc, F. Schnitzler, and P. Hellier. A survey on deep learning

for skeleton-based human animation. arXiv preprint arXiv:2110.06901, 2021.

[118] A. Naik, R. Shariff, N. Yasui, H. Yao, and R. S. Sutton. Discounted Reinforcement Learning

Is Not an Optimization Problem. arXiv:1910.02140 [cs], Nov. 2019. arXiv: 1910.02140.

[119] A. Y. Ng, D. Harada, and S. J. Russell. Policy Invariance Under Reward Transformations:

Theory and Application to Reward Shaping. In Proceedings of the Sixteenth International

Conference on Machine Learning, ICML ’99, pages 278–287, San Francisco, CA, USA, 1999.

Morgan Kaufmann Publishers Inc. ISBN 1-55860-612-2.

[120] S. Park, H. Ryu, S. Lee, S. Lee, and J. Lee. Learning predict-and-simulate policies from

unorganized human motion data. ACM Transactions on Graphics (TOG), 38(6):1–11, 2019.

[121] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,

Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. De-

Vito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and

S. Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning Li-

brary. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d. Alché-Buc, E. Fox, and

R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages

8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

[122] X. B. Peng and M. van de Panne. Learning locomotion skills using deeprl: Does the choice

of action space matter? In Proceedings of the ACM SIGGRAPH/Eurographics Symposium

on Computer Animation, pages 1–13, 2017.

[123] X. B. Peng, G. Berseth, and M. van de Panne. Dynamic Terrain Traversal Skills Using

Reinforcement Learning. ACM Trans. Graph., 34(4), July 2015. ISSN 0730-0301. doi:

10.1145/2766910. URL https://doi.org/10.1145/2766910. Place: New York, NY, USA

Publisher: Association for Computing Machinery.

[124] X. B. Peng, G. Berseth, and M. van de Panne. Terrain-Adaptive Locomotion Skills Using

Deep Reinforcement Learning. ACM Trans. Graph., 35(4), July 2016. ISSN 0730-0301. doi:

10.1145/2897824.2925881. URL https://doi.org/10.1145/2897824.2925881. Place: New

York, NY, USA Publisher: Association for Computing Machinery.

[125] X. B. Peng, G. Berseth, K. Yin, and M. Van De Panne. DeepLoco: Dynamic Locomo-

tion Skills Using Hierarchical Deep Reinforcement Learning. ACM Trans. Graph., 36(4),

July 2017. ISSN 0730-0301. doi: 10.1145/3072959.3073602. URL https://doi.org/10.

1145/3072959.3073602. Place: New York, NY, USA Publisher: Association for Computing

Machinery.

[126] X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne. DeepMimic: Example-Guided

Deep Reinforcement Learning of Physics-Based Character Skills. ACM Trans. Graph., 37

133

http://arxiv.org/abs/1712.05889
http://arxiv.org/abs/1712.05889
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1145/2766910
https://doi.org/10.1145/2897824.2925881
https://doi.org/10.1145/3072959.3073602
https://doi.org/10.1145/3072959.3073602

(4), July 2018. ISSN 0730-0301. doi: 10.1145/3197517.3201311. URL https://doi.org/10.

1145/3197517.3201311. Place: New York, NY, USA Publisher: Association for Computing

Machinery.

[127] X. B. Peng, A. Kanazawa, J. Malik, P. Abbeel, and S. Levine. Sfv: Reinforcement learning

of physical skills from videos. ACM Transactions On Graphics (TOG), 37(6):1–14, 2018.

[128] X. B. Peng, E. Coumans, T. Zhang, T.-W. Lee, J. Tan, and S. Levine. Learning agile robotic

locomotion skills by imitating animals. arXiv preprint arXiv:2004.00784, 2020.

[129] X. B. Peng, Z. Ma, P. Abbeel, S. Levine, and A. Kanazawa. AMP: Adversarial Motion

Priors for Stylized Physics-Based Character Control. ACM Trans. Graph., 40(4), July 2021.

ISSN 0730-0301. doi: 10.1145/3450626.3459670. URL https://doi.org/10.1145/3450626.

3459670. Place: New York, NY, USA Publisher: Association for Computing Machinery.

[130] S. Pitis. Rethinking the Discount Factor in Reinforcement Learning: A Decision Theoretic

Approach. Proceedings of the AAAI Conference on Artificial Intelligence, 33:7949–7956,

July 2019. ISSN 2374-3468, 2159-5399. doi: 10.1609/aaai.v33i01.33017949. URL https:

//aaai.org/ojs/index.php/AAAI/article/view/4795.

[131] D. Premack and G. Woodruff. Does the chimpanzee have a theory of mind? Behavioral and

Brain Sciences, 1(4):515–526, 1978. doi: 10.1017/S0140525X00076512.

[132] N. C. Rabinowitz, F. Perbet, H. F. Song, C. Zhang, S. M. A. Eslami, and M. Botvinick.

Machine Theory of Mind. arXiv:1802.07740 [cs], Mar. 2018. URL http://arxiv.org/abs/

1802.07740.

[133] A. Raffin. RL Baselines3 Zoo. GitHub, 2020. URL https://github.com/DLR-RM/

rl-baselines3-zoo. Publication Title: GitHub repository.

[134] A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, and N. Dormann. Stable Base-

lines3. GitHub, 2019. URL https://github.com/DLR-RM/stable-baselines3. Publication

Title: GitHub repository.

[135] J. Rajamäki and P. Hämäläinen. Augmenting sampling based controllers with machine

learning. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer

Animation, pages 1–9, 2017.

[136] T. Rashid, M. Samvelyan, C. S. de Witt, G. Farquhar, J. Foerster, and S. Whiteson. QMIX:

Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning.

arXiv:1803.11485 [cs, stat], June 2018. URL http://arxiv.org/abs/1803.11485. arXiv:

1803.11485.

[137] T. Rashid, G. Farquhar, B. Peng, and S. Whiteson. Weighted QMIX: Expanding Monotonic

Value Function Factorisation for Deep Multi-Agent Reinforcement Learning. In H. Larochelle,

M. Ranzato, R. Hadsell, M.-F. Balcan, and H.-T. Lin, editors, Advances in Neural Informa-

tion Processing Systems 33: Annual Conference on Neural Information Processing Systems

2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.

neurips.cc/paper/2020/hash/73a427badebe0e32caa2e1fc7530b7f3-Abstract.html.

134

https://doi.org/10.1145/3197517.3201311
https://doi.org/10.1145/3197517.3201311
https://doi.org/10.1145/3450626.3459670
https://doi.org/10.1145/3450626.3459670
https://aaai.org/ojs/index.php/AAAI/article/view/4795
https://aaai.org/ojs/index.php/AAAI/article/view/4795
http://arxiv.org/abs/1802.07740
http://arxiv.org/abs/1802.07740
https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/DLR-RM/stable-baselines3
http://arxiv.org/abs/1803.11485
https://proceedings.neurips.cc/paper/2020/hash/73a427badebe0e32caa2e1fc7530b7f3-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/73a427badebe0e32caa2e1fc7530b7f3-Abstract.html

[138] D. Reda, T. Tao, and M. van de Panne. Learning to locomote: Understanding how envi-

ronment design matters for deep reinforcement learning. In Motion, Interaction and Games,

pages 1–10. 2020.

[139] S. Ross, G. Gordon, and D. Bagnell. A Reduction of Imitation Learning and Structured Pre-

diction to No-Regret Online Learning. In G. Gordon, D. Dunson, and M. Dud́ık, editors, Pro-

ceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics,

volume 15 of Proceedings of Machine Learning Research, pages 627–635, Fort Lauderdale,

FL, USA, Apr. 2011. PMLR. URL http://proceedings.mlr.press/v15/ross11a.html.

[140] R. Y. Rubinstein. Simulation and the Monte Carlo Method. John Wiley & Sons, Inc., USA,

1st edition, 1981. ISBN 978-0-471-08917-9.

[141] A. Santoro, D. Raposo, D. G. T. Barrett, M. Malinowski, R. Pascanu, P. Battaglia, and

T. Lillicrap. A simple neural network module for relational reasoning. arXiv:1706.01427

[cs], June 2017. URL http://arxiv.org/abs/1706.01427.

[142] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized Experience Replay.

arXiv:1511.05952 [cs], Feb. 2016. URL http://arxiv.org/abs/1511.05952. arXiv:

1511.05952.

[143] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust Region Policy Opti-

mization. In International Conference on Machine Learning, pages 1889–1897. PMLR, June

2015. ISSN: 1938-7228.

[144] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal Policy Opti-

mization Algorithms. arXiv:1707.06347 [cs], Aug. 2017.

[145] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-Dimensional Continuous

Control Using Generalized Advantage Estimation. arXiv:1506.02438 [cs], Oct. 2018.

[146] A. Seth, M. Sherman, J. A. Reinbolt, and S. L. Delp. OpenSim: a musculoskeletal modeling

and simulation framework for in silico investigations and exchange. Procedia IUTAM, 2:212–

232, 2011. ISSN 22109838. doi: 10.1016/j.piutam.2011.04.021. URL https://linkinghub.

elsevier.com/retrieve/pii/S2210983811000228.

[147] C. R. Shelton. Balancing multiple sources of reward in reinforcement learning. In Proceedings

of the 13th International Conference on Neural Information Processing Systems, NIPS’00,

pages 1038–1044, Cambridge, MA, USA, Jan. 2000. MIT Press.

[148] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Deterministic policy

gradient algorithms. In Proceedings of the 31st International Conference on International

Conference on Machine Learning - Volume 32, ICML’14, pages I–387–I–395, Beijing, China,

June 2014. JMLR.org.

[149] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,

D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis. Mastering Chess and

Shogi by Self-Play with a General Reinforcement Learning Algorithm. arXiv:1712.01815 [cs],

Dec. 2017. URL http://arxiv.org/abs/1712.01815.

135

http://proceedings.mlr.press/v15/ross11a.html
http://arxiv.org/abs/1706.01427
http://arxiv.org/abs/1511.05952
https://linkinghub.elsevier.com/retrieve/pii/S2210983811000228
https://linkinghub.elsevier.com/retrieve/pii/S2210983811000228
http://arxiv.org/abs/1712.01815

[150] D. Silver, S. Singh, D. Precup, and R. S. Sutton. Reward is enough. Artificial Intelligence,

299:103535, Oct. 2021. ISSN 0004-3702. doi: 10.1016/j.artint.2021.103535. URL https:

//www.sciencedirect.com/science/article/pii/S0004370221000862.

[151] G. Snook. Simplified 3D Movement and Pathfinding Using Navigation Meshes. In M. De-

Loura, editor, Game Programming Gems, pages 288–304. Charles River Media, 2000.

[152] N. Soares. The Value Learning Problem. In R. V. Yampolskiy, editor, Artificial Intelligence

Safety and Security, pages 89–97. Chapman and Hall/CRC, First edition. | Boca Raton,

FL : CRC Press/Taylor & Francis Group, 2018., 1 edition, July 2018. ISBN 978-1-351-

25138-9. doi: 10.1201/9781351251389-7. URL https://www.taylorfrancis.com/books/

9781351251372/chapters/10.1201/9781351251389-7.

[153] K. Son, D. Kim, W. J. Kang, D. E. Hostallero, and Y. Yi. QTRAN: Learning to Factorize

with Transformation for Cooperative Multi-Agent Reinforcement Learning. In K. Chaudhuri

and R. Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine

Learning, volume 97 of Proceedings of Machine Learning Research, pages 5887–5896. PMLR,

June 2019. URL http://proceedings.mlr.press/v97/son19a.html.

[154] Stack Overflow. Stack Overflow Developer Survey 2020, 2020. URL https://insights.

stackoverflow.com/survey/2020.

[155] R. H. Strotz. Myopia and Inconsistency in Dynamic Utility Maximization. The Review of

Economic Studies, 23(3):165–180, 1955. ISSN 0034-6527. doi: 10.2307/2295722. Publisher:

[Oxford University Press, Review of Economic Studies, Ltd.].

[156] L. Sun, J. Zhai, and W. Qin. Crowd Navigation in an Unknown and Dynamic Environment

Based on Deep Reinforcement Learning. IEEE Access, 7:109544–109554, 2019. ISSN 2169-

3536. doi: 10.1109/ACCESS.2019.2933492. Conference Name: IEEE Access.

[157] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi, M. Jaderberg, M. Lanctot,

N. Sonnerat, J. Z. Leibo, K. Tuyls, and T. Graepel. Value-Decomposition Networks For

Cooperative Multi-Agent Learning. arXiv:1706.05296 [cs], June 2017. URL http://arxiv.

org/abs/1706.05296.

[158] R. S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning,

3(1):9–44, Aug. 1988. ISSN 1573-0565. doi: 10.1007/BF00115009. URL https://doi.org/

10.1007/BF00115009.

[159] R. S. Sutton and A. G. Barto. Introduction to Reinforcement Learning. MIT Press, Cam-

bridge, MA, USA, 1st edition, 1998. ISBN 978-0-262-19398-6.

[160] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. A Bradford Book,

Cambridge, MA, USA, 2018. ISBN 978-0-262-03924-6.

[161] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for rein-

forcement learning with function approximation. In Proceedings of the 12th International

Conference on Neural Information Processing Systems, NIPS’99, pages 1057–1063, Cam-

bridge, MA, USA, Nov. 1999. MIT Press.

136

https://www.sciencedirect.com/science/article/pii/S0004370221000862
https://www.sciencedirect.com/science/article/pii/S0004370221000862
https://www.taylorfrancis.com/books/9781351251372/chapters/10.1201/9781351251389-7
https://www.taylorfrancis.com/books/9781351251372/chapters/10.1201/9781351251389-7
http://proceedings.mlr.press/v97/son19a.html
https://insights.stackoverflow.com/survey/2020
https://insights.stackoverflow.com/survey/2020
http://arxiv.org/abs/1706.05296
http://arxiv.org/abs/1706.05296
https://doi.org/10.1007/BF00115009
https://doi.org/10.1007/BF00115009

[162] Y. Tassa, T. Erez, and E. Todorov. Synthesis and stabilization of complex behaviors through

online trajectory optimization. In 2012 IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 4906–4913, 2012. doi: 10.1109/IROS.2012.6386025.

[163] J. K. Terry, N. Grammel, A. Hari, L. Santos, and B. Black. Revisiting Parameter Sharing

In Multi-Agent Deep Reinforcement Learning. arXiv:2005.13625 [cs, stat], Nov. 2020. URL

http://arxiv.org/abs/2005.13625. arXiv: 2005.13625 version: 5.

[164] J. K. Terry, B. Black, M. Jayakumar, A. Hari, R. Sullivan, L. Santos, C. Dieffendahl, N. L.

Williams, Y. Lokesh, C. Horsch, and P. Ravi. PettingZoo: Gym for Multi-Agent Reinforce-

ment Learning. arXiv:2009.14471 [cs, stat], Feb. 2021. URL http://arxiv.org/abs/2009.

14471. arXiv: 2009.14471.

[165] J. K. Terry, N. Grammel, B. Black, A. Hari, C. Horsch, and L. Santos. Agent Environment

Cycle Games. arXiv:2009.13051 [cs, stat], May 2021. URL http://arxiv.org/abs/2009.

13051. arXiv: 2009.13051.

[166] E. Todorov, T. Erez, and Y. Tassa. MuJoCo: A physics engine for model-based control. In

2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–

5033, Oct. 2012. doi: 10.1109/IROS.2012.6386109. ISSN: 2153-0866.

[167] W. Toll and J. Pettré. Algorithms for Microscopic Crowd Simulation: Advancements in the

2010s. Computer Graphics Forum, 40(2):731–754, May 2021. ISSN 0167-7055, 1467-8659. doi:

10.1111/cgf.142664. URL https://onlinelibrary.wiley.com/doi/10.1111/cgf.142664.

[168] F. Torabi, G. Warnell, and P. Stone. Behavioral Cloning from Observation. In Proceedings

of the 27th International Joint Conference on Artificial Intelligence, IJCAI’18, pages 4950–

4957. AAAI Press, 2018. ISBN 978-0-9992411-2-7. event-place: Stockholm, Sweden.

[169] M. Towers, J. K. Terry, A. Kwiatkowski, J. U. Balis, G. d. Cola, T. Deleu, M. Goulão,

A. Kallinteris, A. KG, M. Krimmel, R. Perez-Vicente, A. Pierré, S. Schulhoff, J. J. Tai,

A. T. J. Shen, and O. G. Younis. Gymnasium, Mar. 2023. URL https://zenodo.org/

record/8127025. Language: eng.

[170] A. Treuille, Y. Lee, and Z. Popović. Near-optimal character animation with continuous

control. In ACM SIGGRAPH 2007 papers, pages 7–es. 2007.

[171] H. van Hasselt, A. Guez, and D. Silver. Deep Reinforcement Learning with Double Q-

learning. arXiv:1509.06461 [cs], Dec. 2015. URL http://arxiv.org/abs/1509.06461.

arXiv: 1509.06461.

[172] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and

I. Polosukhin. Attention Is All You Need. arXiv:1706.03762 [cs], Dec. 2017. URL http:

//arxiv.org/abs/1706.03762.

[173] J. Wang, Z. Ren, T. Liu, Y. Yu, and C. Zhang. QPLEX: Duplex Dueling Multi-Agent Q-

Learning. In 9th International Conference on Learning Representations, ICLR 2021, Virtual

Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/

forum?id=Rcmk0xxIQV.

137

http://arxiv.org/abs/2005.13625
http://arxiv.org/abs/2009.14471
http://arxiv.org/abs/2009.14471
http://arxiv.org/abs/2009.13051
http://arxiv.org/abs/2009.13051
https://onlinelibrary.wiley.com/doi/10.1111/cgf.142664
https://zenodo.org/record/8127025
https://zenodo.org/record/8127025
http://arxiv.org/abs/1509.06461
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://openreview.net/forum?id=Rcmk0xxIQV
https://openreview.net/forum?id=Rcmk0xxIQV

[174] T. Wang, Y. Guo, M. Shugrina, and S. Fidler. Unicon: Universal neural controller for

physics-based character motion. arXiv preprint arXiv:2011.15119, 2020.

[175] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas. Dueling Network

Architectures for Deep Reinforcement Learning. In International Conference on Machine

Learning, pages 1995–2003. PMLR, June 2016. URL http://proceedings.mlr.press/

v48/wangf16.html. ISSN: 1938-7228.

[176] C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3):279–292, May 1992.

ISSN 1573-0565. doi: 10.1007/BF00992698. URL https://doi.org/10.1007/BF00992698.

[177] J. Weng, H. Chen, D. Yan, K. You, A. Duburcq, M. Zhang, H. Su, and J. Zhu. Tianshou:

a Highly Modularized Deep Reinforcement Learning Library. arXiv:2107.14171 [cs], July

2021. URL http://arxiv.org/abs/2107.14171. arXiv: 2107.14171.

[178] K. Werling, D. Omens, J. Lee, I. Exarchos, and C. K. Liu. Fast and Feature-Complete

Differentiable Physics for Articulated Rigid Bodies with Contact. mar 2021. URL https:

//arxiv.org/abs/2103.16021v3.

[179] M. W. Whittle. Gait analysis: an introduction. Butterworth-Heinemann, Elsevier, Edin-

burgh, 4th ed., reprinted edition, 2008. ISBN 978-0-7506-8883-3.

[180] R. J. Williams. Simple Statistical Gradient-Following Algorithms for Connectionist Rein-

forcement Learning. Machine Language, 8(3-4):229–256, May 1992. ISSN 0885-6125. doi:

10.1007/BF00992696.

[181] J. Won and J. Lee. Learning body shape variation in physics-based characters. ACM Trans-

actions on Graphics (TOG), 38(6):1–12, 2019.

[182] J. Won, D. Gopinath, and J. Hodgins. A scalable approach to control diverse behaviors for

physically simulated characters. ACM Transactions on Graphics (TOG), 39(4):33–1, 2020.

[183] Y. Wu, E. Mansimov, S. Liao, R. Grosse, and J. Ba. Scalable trust-region method for deep

reinforcement learning using Kronecker-factored approximation. arXiv:1708.05144 [cs], Aug.

2017. URL http://arxiv.org/abs/1708.05144. arXiv: 1708.05144.

[184] Z. Xie, H. Y. Ling, N. H. Kim, and M. van de Panne. ALLSTEPS: Curriculum-driven

Learning of Stepping Stone Skills. In Proc. ACM SIGGRAPH / Eurographics Symposium

on Computer Animation, 2020.

[185] D. Xu, X. Huang, Z. Li, and X. Li. Local motion simulation using deep reinforcement

learning. Transactions in GIS, 24(3):756–779, 2020. ISSN 1467-9671. doi: 10.1111/tgis.

12620. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/tgis.12620. eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1111/tgis.12620.

[186] P. Xu and I. Karamouzas. Human-Inspired Multi-Agent Navigation using Knowledge Distil-

lation. arXiv:2103.10000 [cs], Mar. 2021. URL http://arxiv.org/abs/2103.10000. arXiv:

2103.10000.

[187] Y. Yang, J. Hao, B. Liao, K. Shao, G. Chen, W. Liu, and H. Tang. Qatten: A General

Framework for Cooperative Multiagent Reinforcement Learning. CoRR, abs/2002.03939,

2020. URL https://arxiv.org/abs/2002.03939. eprint: 2002.03939.

138

http://proceedings.mlr.press/v48/wangf16.html
http://proceedings.mlr.press/v48/wangf16.html
https://doi.org/10.1007/BF00992698
http://arxiv.org/abs/2107.14171
https://arxiv.org/abs/2103.16021v3
https://arxiv.org/abs/2103.16021v3
http://arxiv.org/abs/1708.05144
https://onlinelibrary.wiley.com/doi/abs/10.1111/tgis.12620
http://arxiv.org/abs/2103.10000
https://arxiv.org/abs/2002.03939

[188] Z. Yin, Z. Yang, M. Van De Panne, and K. Yin. Discovering Diverse Athletic Jumping

Strategies. ACM Trans. Graph., 40(4), July 2021. ISSN 0730-0301. doi: 10.1145/3450626.

3459817. URL https://doi.org/10.1145/3450626.3459817. Place: New York, NY, USA

Publisher: Association for Computing Machinery.

[189] C. Yu, A. Velu, E. Vinitsky, Y. Wang, A. Bayen, and Y. Wu. The Surprising Effectiveness

of PPO in Cooperative, Multi-Agent Games. arXiv:2103.01955 [cs], July 2021. URL http:

//arxiv.org/abs/2103.01955. arXiv: 2103.01955.

[190] W. Yu, G. Turk, and C. K. Liu. Learning Symmetric and Low-Energy Locomotion. ACM

Trans. Graph., 37(4), July 2018. ISSN 0730-0301. doi: 10.1145/3197517.3201397. URL

https://doi.org/10.1145/3197517.3201397. Place: New York, NY, USA Publisher: As-

sociation for Computing Machinery.

[191] Y. Yuan and K. Kitani. Residual force control for agile human behavior imitation and

extended motion synthesis. arXiv preprint arXiv:2006.07364, 2020.

[192] Y. Yuan, S.-E. Wei, T. Simon, K. Kitani, and J. M. Saragih. SimPoE: Simu-

lated Character Control for 3D Human Pose Estimation. In IEEE Conference

on Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19-

25, 2021, pages 7159–7169. Computer Vision Foundation / IEEE, 2021. URL

https://openaccess.thecvf.com/content/CVPR2021/html/Yuan_SimPoE_Simulated_

Character_Control_for_3D_Human_Pose_Estimation_CVPR_2021_paper.html.

[193] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J. Smola.

Deep Sets. In Advances in Neural Information Processing Systems, volume 30. Cur-

ran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/hash/

f22e4747da1aa27e363d86d40ff442fe-Abstract.html.

[194] V. Zambaldi, D. Raposo, A. Santoro, V. Bapst, Y. Li, I. Babuschkin, K. Tuyls, D. Reichert,

T. Lillicrap, E. Lockhart, M. Shanahan, V. Langston, R. Pascanu, M. Botvinick, O. Vinyals,

and P. Battaglia. Relational Deep Reinforcement Learning. arXiv:1806.01830 [cs, stat], June

2018. URL http://arxiv.org/abs/1806.01830.

[195] M. Zhou, Z. Liu, P. Sui, Y. Li, and Y. Y. Chung. Learning Implicit Credit Assignment

for Cooperative Multi-Agent Reinforcement Learning. Advances in Neural Information Pro-

cessing Systems, 33:11853–11864, 2020. URL https://papers.nips.cc/paper/2020/hash/

8977ecbb8cb82d77fb091c7a7f186163-Abstract.html.

[196] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey. Maximum Entropy Inverse Reinforce-

ment Learning. In Proceedings of the 23rd National Conference on Artificial Intelligence -

Volume 3, AAAI’08, pages 1433–1438. AAAI Press, 2008. ISBN 978-1-57735-368-3. event-

place: Chicago, Illinois.

[197] H. Zou, H. Su, S. Song, and J. Zhu. Understanding Human Behaviors in Crowds by Imitating

the Decision-Making Process. arXiv:1801.08391 [cs], Jan. 2018. URL http://arxiv.org/

abs/1801.08391. arXiv: 1801.08391.

139

https://doi.org/10.1145/3450626.3459817
http://arxiv.org/abs/2103.01955
http://arxiv.org/abs/2103.01955
https://doi.org/10.1145/3197517.3201397
https://openaccess.thecvf.com/content/CVPR2021/html/Yuan_SimPoE_Simulated_Character_Control_for_3D_Human_Pose_Estimation_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Yuan_SimPoE_Simulated_Character_Control_for_3D_Human_Pose_Estimation_CVPR_2021_paper.html
https://proceedings.neurips.cc/paper/2017/hash/f22e4747da1aa27e363d86d40ff442fe-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/f22e4747da1aa27e363d86d40ff442fe-Abstract.html
http://arxiv.org/abs/1806.01830
https://papers.nips.cc/paper/2020/hash/8977ecbb8cb82d77fb091c7a7f186163-Abstract.html
https://papers.nips.cc/paper/2020/hash/8977ecbb8cb82d77fb091c7a7f186163-Abstract.html
http://arxiv.org/abs/1801.08391
http://arxiv.org/abs/1801.08391

Titre: Simulation de foules avec l’apprentissage par renforcement

Mots clés: simulation de foules, apprentissage par renforcement, apprentissage automatique,

intelligence artificielle, apprentissage par renforcement multi-agents

Résumé: Simuler le comportement des

foules constitue une composante clé de

la création d’espaces numériques immer-

sifs. Les méthodes traditionnelles, bien

qu’efficaces, sont souvent limitées dans leur

capacité à reproduire fidèlement la complexité

du comportement humain. Récemment,

l’apprentissage par renforcement (RL) a

émergé comme une nouvelle approche pour

surmonter ce défi. Cependant, de nombreux

détails de la simulation des foules par RL

peuvent sembler négligeables, mais s’avèrent

avoir un impact majeur, incluant la sim-

ulation physique sous-jacente, les modèles

d’observations et de dynamiques, et les détails

de l’algorithme RL lui-même.

Cette thèse vise à mettre en lumière ces

détails cruciaux et leurs effets sur les foules

virtuelles formées par RL. Notre objectif

est d’établir une compréhension des choix

de conception pertinents qui permettraient

la création de simulations de foules plus

réalistes.

Dans la première partie, nous nous con-

centrons sur l’évaluation de l’impact des

divers choix de conception sur la perfor-

mance d’apprentissage et la qualité du com-

portement résultant. Nos expériences avec

le Deep RL montrent que les contrôles

non holonomiques avec une variante

d’observations égocentriques produisent de

meilleurs résultats par rapport aux autres al-

ternatives plus simples.

Ensuite, nous examinons les détails de la

conception de la fonction de récompense

pour simuler des foules semblables aux hu-

mains. Nos expériences montrent qu’une

minimisation directe de l’utilisation d’énergie,

lorsqu’elle est couplée à un potentiel de

guidage correctement calibré, permet de

générer des comportements de foule plus ef-

ficaces.

Enfin, nous explorons le mécanisme

d’escompte dans le RL. Nous présentons

l’algorithme UGAE, une nouvelle solution

qui permet l’utilisation d’algorithmes RL

modernes avec un escompte arbitraire. Nous

démontrons que UGAE surpasse la base de

référence de Monte Carlo en utilisant à la fois

des critères de référence RL standard et des

scénarios de simulation de foule. Ceci ouvre

la voie à de futures méthodes de simulation de

foule utilisant un escompte non exponentiel.

Dans l’ensemble, cette recherche apporte des

éclairages essentiels sur la dynamique des

foules formées par RL, et contribue significa-

tivement au développement de nouvelles tech-

niques et à l’amélioration des techniques exis-

tantes pour la simulation de foule.

Title: Simulating Crowds with Reinforcement Learning

Keywords: crowd simulation, reinforcement learning, machine learning, artificial intelli-

gence, multiagent reinforcement learning

Abstract: Simulating crowd behavior is an

important aspect of creating immersive dig-

ital environments, be it for video games or

other virtual experiences. Traditional meth-

ods lead to satisfactory results but are of-

ten limited in their capacity to accurately

emulate the complexity of human behavior.

Recently, Reinforcement Learning (RL) has

emerged as a new approach to tackle this

problem. However, there are many details of

RL-driven crowd simulation that may seem ir-

relevant, but turn out to be rather impactful.

This includes the underlying physics simula-

tion, models of observations and dynamics,

and details of the RL algorithm optimizing

the crowd’s behavior.

This thesis aims to shed light on these criti-

cal details and their effects on virtual crowds

trained with RL. Our overarching objective

is to establish an understanding of relevant

design choices, enabling the creation of more

realistic crowd simulations.

In the first part of the thesis, we focus on

evaluating how various design choices of the

foundational crowd simulation impact both

the learning performance and the overall qual-

ity of the resulting behavior. We present a

classification of observation methods and dy-

namics, and evaluated their impact with DRL

experiments. This shows that nonholonomic

controls with a variant of egocentric obser-

vations produce better results compared to

other, simpler alternatives.

Following this, we investigate the details of

reward function design for simulating human-

like crowds. We explore different reward func-

tions, providing theoretical insights on their

properties, and evaluate them empirically in

different scenarios. Our experiments show

that directly minimizing energy usage, when

paired with a properly scaled guiding poten-

tial, are effective in producing more efficient

crowd behaviors.

In the final part of the thesis, we explore the

discounting mechanism in RL. We present the

Universal Generalized Advantage Estimation

(UGAE) algorithm, a novel solution that en-

ables using modern RL algorithms with arbi-

trary discounting. We also introduce Beta-

weighted discounting to parameterize non-

exponential discounting methods. We demon-

strate that UGAE outperforms the Monte

Carlo baseline using both standard RL bench-

marks and crowd simulation scenarios. This

paves the way to future crowd simulation

methods using non-exponential discounting,

which may help overcome some of the chal-

lenges identified in our previous work.

This work, combined, provides critical in-

sights into the dynamics of reinforcement

learned crowds, and contributes significantly

to the development of new and improved tech-

niques for crowd simulation.

Institut Polytechnique de Paris

91120 Palaiseau, France

	Introduction
	Objective
	Methodology
	Thesis structure
	Publications

	State of the Art
	Introduction
	Problems in Character Animation

	Definitions and Preliminaries
	Reinforcement Learning Formalisms
	Fundamentals of RL Algorithms
	Reward Hypothesis, Discounting, Advantage

	Classification of RL Algorithms
	Policy-based or Value-based
	Actor-Critic
	On-policy or Off-policy
	Model-free or Model-based
	Single-agent or Multiagent
	Summary

	Single-agent RL Algorithms
	DQN
	Rainbow
	REINFORCE
	TRPO
	PPO
	A3C, A2C
	GAE
	DDPG
	TD3
	SAC
	Learning from Data
	Summary

	Multiagent RL Algorithms
	Independent Learning
	MADDPG
	MAPPO
	QMIX
	Summary

	Skeletal Animation
	RL for Kinematic Motion Synthesis
	The Many Challenges Beyond the Choice of Algorithm
	RL for Individual Character Skills

	Crowd Animation
	Challenges of Crowds
	Applications

	Human Interaction
	Frameworks
	Neural Networks
	Environments
	Algorithm implementations
	Summary

	Conclusions

	Reinforcement Learning for Crowd Simulation
	Introduction
	Environment Design Choices
	Problem Formulation
	Observation Space
	Action Space and Dynamics

	Reward Function Design
	Energy and Metrics
	Reward and Preferred Velocity
	Energy as reward

	Experimental setup
	Policy Optimization
	Network Architecture

	Experiments
	Dynamics and Observations performance
	All Scenarios
	Velocity Reward Exponent
	Importance of collision penalty
	Common Failure Modes

	Discussion
	Limitations and Future Work
	Conclusions

	Reward function design
	Introduction
	Energy Usage Model
	Acceleration correction

	Navigation reward design
	Energy as reward
	Energy-based potential
	Discounting invariance
	Non-finishing penalty
	Alternative approaches

	Reward evaluation
	Experimental setup
	Reward function structure

	Results
	Is potential necessary?
	Impact of acceleration

	Conclusions

	Non-exponential reward discounting
	Introduction
	UGAE – Universal Generalized Advantage Estimation
	UGAE
	Added estimation bias
	Non-exponential discounting

	Beta-weighted discounting
	Beta-weighted discounting
	Beta distribution properties

	Analysis of non-exponential discounting methods
	Properties of discounting
	Experimental Analysis
	Discussion
	Why non-exponential discounting?

	DRL Experiments
	Results
	Computation time
	Discussion

	Conclusions

	Conclusion
	Non-exponential reward discounting
	Proofs
	Beta-weighted Discounting Properties
	Pathworld experiments
	Setup
	Pathworld results

	Reward function design
	Discounting-invariant reward
	Algorithmic details
	Reward implementation details

